| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > endisj | Unicode version | ||
| Description: Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.) |
| Ref | Expression |
|---|---|
| endisj.1 |
|
| endisj.2 |
|
| Ref | Expression |
|---|---|
| endisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endisj.1 |
. . . 4
| |
| 2 | 0ex 3884 |
. . . 4
| |
| 3 | 1, 2 | xpsnen 6295 |
. . 3
|
| 4 | endisj.2 |
. . . 4
| |
| 5 | 1on 6008 |
. . . . 5
| |
| 6 | 5 | elexi 2567 |
. . . 4
|
| 7 | 4, 6 | xpsnen 6295 |
. . 3
|
| 8 | 3, 7 | pm3.2i 257 |
. 2
|
| 9 | xp01disj 6017 |
. 2
| |
| 10 | p0ex 3939 |
. . . 4
| |
| 11 | 1, 10 | xpex 4453 |
. . 3
|
| 12 | 6 | snex 3937 |
. . . 4
|
| 13 | 4, 12 | xpex 4453 |
. . 3
|
| 14 | breq1 3767 |
. . . . 5
| |
| 15 | breq1 3767 |
. . . . 5
| |
| 16 | 14, 15 | bi2anan9 538 |
. . . 4
|
| 17 | ineq12 3133 |
. . . . 5
| |
| 18 | 17 | eqeq1d 2048 |
. . . 4
|
| 19 | 16, 18 | anbi12d 442 |
. . 3
|
| 20 | 11, 13, 19 | spc2ev 2648 |
. 2
|
| 21 | 8, 9, 20 | mp2an 402 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 |
| This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-br 3765 df-opab 3819 df-mpt 3820 df-tr 3855 df-id 4030 df-iord 4103 df-on 4105 df-suc 4108 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-1o 6001 df-en 6222 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |