ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trin2 Unicode version

Theorem trin2 4703
Description: The intersection of two transitive classes is transitive. (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
trin2  |-  ( ( ( R  o.  R
)  C_  R  /\  ( S  o.  S
)  C_  S )  ->  ( ( R  i^i  S )  o.  ( R  i^i  S ) ) 
C_  ( R  i^i  S ) )

Proof of Theorem trin2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cotr 4693 . . . 4  |-  ( ( R  o.  R ) 
C_  R  <->  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )
2 cotr 4693 . . . . . 6  |-  ( ( S  o.  S ) 
C_  S  <->  A. x A. y A. z ( ( x S y  /\  y S z )  ->  x S
z ) )
3 brin 3808 . . . . . . . . . . . . 13  |-  ( x ( R  i^i  S
) y  <->  ( x R y  /\  x S y ) )
4 brin 3808 . . . . . . . . . . . . 13  |-  ( y ( R  i^i  S
) z  <->  ( y R z  /\  y S z ) )
5 simpr 103 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( x R y  /\  y R z )  ->  x R z ) )
6 simpl 102 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( x S y  /\  y S z )  ->  x S z ) )
75, 6anim12d 318 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( ( x R y  /\  y R z )  /\  ( x S y  /\  y S z ) )  ->  (
x R z  /\  x S z ) ) )
87com12 27 . . . . . . . . . . . . . 14  |-  ( ( ( x R y  /\  y R z )  /\  ( x S y  /\  y S z ) )  ->  ( ( ( ( x S y  /\  y S z )  ->  x S
z )  /\  (
( x R y  /\  y R z )  ->  x R
z ) )  -> 
( x R z  /\  x S z ) ) )
98an4s 522 . . . . . . . . . . . . 13  |-  ( ( ( x R y  /\  x S y )  /\  ( y R z  /\  y S z ) )  ->  ( ( ( ( x S y  /\  y S z )  ->  x S
z )  /\  (
( x R y  /\  y R z )  ->  x R
z ) )  -> 
( x R z  /\  x S z ) ) )
103, 4, 9syl2anb 275 . . . . . . . . . . . 12  |-  ( ( x ( R  i^i  S ) y  /\  y
( R  i^i  S
) z )  -> 
( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( x R z  /\  x S z ) ) )
1110com12 27 . . . . . . . . . . 11  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  -> 
( x R z  /\  x S z ) ) )
12 brin 3808 . . . . . . . . . . 11  |-  ( x ( R  i^i  S
) z  <->  ( x R z  /\  x S z ) )
1311, 12syl6ibr 151 . . . . . . . . . 10  |-  ( ( ( ( x S y  /\  y S z )  ->  x S z )  /\  ( ( x R y  /\  y R z )  ->  x R z ) )  ->  ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
1413alanimi 1348 . . . . . . . . 9  |-  ( ( A. z ( ( x S y  /\  y S z )  ->  x S z )  /\  A. z ( ( x R y  /\  y R z )  ->  x R z ) )  ->  A. z ( ( x ( R  i^i  S ) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
1514alanimi 1348 . . . . . . . 8  |-  ( ( A. y A. z
( ( x S y  /\  y S z )  ->  x S z )  /\  A. y A. z ( ( x R y  /\  y R z )  ->  x R
z ) )  ->  A. y A. z ( ( x ( R  i^i  S ) y  /\  y ( R  i^i  S ) z )  ->  x ( R  i^i  S ) z ) )
1615alanimi 1348 . . . . . . 7  |-  ( ( A. x A. y A. z ( ( x S y  /\  y S z )  ->  x S z )  /\  A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z ) )  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
1716ex 108 . . . . . 6  |-  ( A. x A. y A. z
( ( x S y  /\  y S z )  ->  x S z )  -> 
( A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z )  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) ) )
182, 17sylbi 114 . . . . 5  |-  ( ( S  o.  S ) 
C_  S  ->  ( A. x A. y A. z ( ( x R y  /\  y R z )  ->  x R z )  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) ) )
1918com12 27 . . . 4  |-  ( A. x A. y A. z
( ( x R y  /\  y R z )  ->  x R z )  -> 
( ( S  o.  S )  C_  S  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) ) )
201, 19sylbi 114 . . 3  |-  ( ( R  o.  R ) 
C_  R  ->  (
( S  o.  S
)  C_  S  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) ) )
2120imp 115 . 2  |-  ( ( ( R  o.  R
)  C_  R  /\  ( S  o.  S
)  C_  S )  ->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
22 cotr 4693 . 2  |-  ( ( ( R  i^i  S
)  o.  ( R  i^i  S ) ) 
C_  ( R  i^i  S )  <->  A. x A. y A. z ( ( x ( R  i^i  S
) y  /\  y
( R  i^i  S
) z )  ->  x ( R  i^i  S ) z ) )
2321, 22sylibr 137 1  |-  ( ( ( R  o.  R
)  C_  R  /\  ( S  o.  S
)  C_  S )  ->  ( ( R  i^i  S )  o.  ( R  i^i  S ) ) 
C_  ( R  i^i  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97   A.wal 1241    i^i cin 2913    C_ wss 2914   class class class wbr 3761    o. ccom 4336
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3872  ax-pow 3924  ax-pr 3941
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2308  df-rex 2309  df-v 2556  df-un 2919  df-in 2921  df-ss 2928  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-br 3762  df-opab 3816  df-xp 4338  df-rel 4339  df-co 4341
This theorem is referenced by:  trinxp  4705
  Copyright terms: Public domain W3C validator