![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp3l | Unicode version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp3l |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 102 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3ad2ant3 927 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 df-3an 887 |
This theorem is referenced by: simpl3l 959 simpr3l 965 simp13l 1019 simp23l 1025 simp33l 1031 issod 4056 tfisi 4310 tfrlem5 5930 tfrlemibxssdm 5941 ecopovtrn 6203 ecopovtrng 6206 addassnqg 6480 ltsonq 6496 ltanqg 6498 ltmnqg 6499 addassnq0 6560 mulasssrg 6843 distrsrg 6844 lttrsr 6847 ltsosr 6849 ltasrg 6855 mulextsr1lem 6864 mulextsr1 6865 axmulass 6947 axdistr 6948 lemul1 7584 reapmul1lem 7585 reapmul1 7586 mulcanap 7646 mulcanap2 7647 divassap 7669 divdirap 7674 div11ap 7677 divcanap5 7690 apmul1 7764 ltdiv1 7834 ltmuldiv 7840 ledivmul 7843 lemuldiv 7847 ltdiv2 7853 lediv2 7857 ltdiv23 7858 lediv23 7859 expaddzap 9299 expmulzap 9301 resqrtcl 9627 |
Copyright terms: Public domain | W3C validator |