ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulextsr1lem Unicode version

Theorem mulextsr1lem 6864
Description: Lemma for mulextsr1 6865. (Contributed by Jim Kingdon, 17-Feb-2020.)
Assertion
Ref Expression
mulextsr1lem  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( ( X  .P.  U )  +P.  ( Y  .P.  V ) )  +P.  ( ( Z  .P.  V )  +P.  ( W  .P.  U
) ) )  <P 
( ( ( X  .P.  V )  +P.  ( Y  .P.  U
) )  +P.  (
( Z  .P.  U
)  +P.  ( W  .P.  V ) ) )  ->  ( ( X  +P.  W )  <P 
( Y  +P.  Z
)  \/  ( Z  +P.  Y )  <P 
( W  +P.  X
) ) ) )

Proof of Theorem mulextsr1lem
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcomprg 6676 . . . . . . 7  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
21adantl 262 . . . . . 6  |-  ( ( ( ( X  e. 
P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. ) )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  =  ( g  +P.  f ) )
3 addclpr 6635 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  e.  P. )
43adantl 262 . . . . . . 7  |-  ( ( ( ( X  e. 
P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. ) )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  e.  P. )
5 simp2l 930 . . . . . . . 8  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  Z  e.  P. )
6 simp3r 933 . . . . . . . 8  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  V  e.  P. )
7 mulclpr 6670 . . . . . . . 8  |-  ( ( Z  e.  P.  /\  V  e.  P. )  ->  ( Z  .P.  V
)  e.  P. )
85, 6, 7syl2anc 391 . . . . . . 7  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( Z  .P.  V )  e.  P. )
9 simp1r 929 . . . . . . . 8  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  Y  e.  P. )
10 mulclpr 6670 . . . . . . . 8  |-  ( ( Y  e.  P.  /\  V  e.  P. )  ->  ( Y  .P.  V
)  e.  P. )
119, 6, 10syl2anc 391 . . . . . . 7  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( Y  .P.  V )  e.  P. )
124, 8, 11caovcld 5654 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( Z  .P.  V )  +P.  ( Y  .P.  V
) )  e.  P. )
13 simp1l 928 . . . . . . . 8  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  X  e.  P. )
14 simp3l 932 . . . . . . . 8  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  U  e.  P. )
15 mulclpr 6670 . . . . . . . 8  |-  ( ( X  e.  P.  /\  U  e.  P. )  ->  ( X  .P.  U
)  e.  P. )
1613, 14, 15syl2anc 391 . . . . . . 7  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( X  .P.  U )  e.  P. )
17 simp2r 931 . . . . . . . 8  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  W  e.  P. )
18 mulclpr 6670 . . . . . . . 8  |-  ( ( W  e.  P.  /\  U  e.  P. )  ->  ( W  .P.  U
)  e.  P. )
1917, 14, 18syl2anc 391 . . . . . . 7  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( W  .P.  U )  e.  P. )
204, 16, 19caovcld 5654 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( X  .P.  U )  +P.  ( W  .P.  U
) )  e.  P. )
212, 12, 20caovcomd 5657 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( Z  .P.  V
)  +P.  ( Y  .P.  V ) )  +P.  ( ( X  .P.  U )  +P.  ( W  .P.  U ) ) )  =  ( ( ( X  .P.  U
)  +P.  ( W  .P.  U ) )  +P.  ( ( Z  .P.  V )  +P.  ( Y  .P.  V ) ) ) )
22 addassprg 6677 . . . . . . 7  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
( f  +P.  g
)  +P.  h )  =  ( f  +P.  ( g  +P.  h
) ) )
2322adantl 262 . . . . . 6  |-  ( ( ( ( X  e. 
P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. ) )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )
)  ->  ( (
f  +P.  g )  +P.  h )  =  ( f  +P.  ( g  +P.  h ) ) )
2416, 11, 8, 2, 23, 19, 4caov411d 5686 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( X  .P.  U
)  +P.  ( Y  .P.  V ) )  +P.  ( ( Z  .P.  V )  +P.  ( W  .P.  U ) ) )  =  ( ( ( Z  .P.  V
)  +P.  ( Y  .P.  V ) )  +P.  ( ( X  .P.  U )  +P.  ( W  .P.  U ) ) ) )
25 distrprg 6686 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  .P.  ( g  +P.  h ) )  =  ( ( f  .P.  g )  +P.  (
f  .P.  h )
) )
2625adantl 262 . . . . . . 7  |-  ( ( ( ( X  e. 
P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. ) )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )
)  ->  ( f  .P.  ( g  +P.  h
) )  =  ( ( f  .P.  g
)  +P.  ( f  .P.  h ) ) )
27 mulcomprg 6678 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  .P.  g
)  =  ( g  .P.  f ) )
2827adantl 262 . . . . . . 7  |-  ( ( ( ( X  e. 
P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. ) )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  .P.  g )  =  ( g  .P.  f ) )
2926, 13, 17, 14, 4, 28caovdir2d 5677 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( X  +P.  W )  .P. 
U )  =  ( ( X  .P.  U
)  +P.  ( W  .P.  U ) ) )
3026, 5, 9, 6, 4, 28caovdir2d 5677 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( Z  +P.  Y )  .P. 
V )  =  ( ( Z  .P.  V
)  +P.  ( Y  .P.  V ) ) )
3129, 30oveq12d 5530 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( X  +P.  W
)  .P.  U )  +P.  ( ( Z  +P.  Y )  .P.  V ) )  =  ( ( ( X  .P.  U
)  +P.  ( W  .P.  U ) )  +P.  ( ( Z  .P.  V )  +P.  ( Y  .P.  V ) ) ) )
3221, 24, 313eqtr4d 2082 . . . 4  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( X  .P.  U
)  +P.  ( Y  .P.  V ) )  +P.  ( ( Z  .P.  V )  +P.  ( W  .P.  U ) ) )  =  ( ( ( X  +P.  W
)  .P.  U )  +P.  ( ( Z  +P.  Y )  .P.  V ) ) )
33 mulclpr 6670 . . . . . . 7  |-  ( ( X  e.  P.  /\  V  e.  P. )  ->  ( X  .P.  V
)  e.  P. )
3413, 6, 33syl2anc 391 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( X  .P.  V )  e.  P. )
35 mulclpr 6670 . . . . . . 7  |-  ( ( Y  e.  P.  /\  U  e.  P. )  ->  ( Y  .P.  U
)  e.  P. )
369, 14, 35syl2anc 391 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( Y  .P.  U )  e.  P. )
37 mulclpr 6670 . . . . . . 7  |-  ( ( Z  e.  P.  /\  U  e.  P. )  ->  ( Z  .P.  U
)  e.  P. )
385, 14, 37syl2anc 391 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( Z  .P.  U )  e.  P. )
39 mulclpr 6670 . . . . . . 7  |-  ( ( W  e.  P.  /\  V  e.  P. )  ->  ( W  .P.  V
)  e.  P. )
4017, 6, 39syl2anc 391 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( W  .P.  V )  e.  P. )
4134, 36, 38, 2, 23, 40, 4caov411d 5686 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( X  .P.  V
)  +P.  ( Y  .P.  U ) )  +P.  ( ( Z  .P.  U )  +P.  ( W  .P.  V ) ) )  =  ( ( ( Z  .P.  U
)  +P.  ( Y  .P.  U ) )  +P.  ( ( X  .P.  V )  +P.  ( W  .P.  V ) ) ) )
4226, 5, 9, 14, 4, 28caovdir2d 5677 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( Z  +P.  Y )  .P. 
U )  =  ( ( Z  .P.  U
)  +P.  ( Y  .P.  U ) ) )
4326, 13, 17, 6, 4, 28caovdir2d 5677 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( X  +P.  W )  .P. 
V )  =  ( ( X  .P.  V
)  +P.  ( W  .P.  V ) ) )
4442, 43oveq12d 5530 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( Z  +P.  Y
)  .P.  U )  +P.  ( ( X  +P.  W )  .P.  V ) )  =  ( ( ( Z  .P.  U
)  +P.  ( Y  .P.  U ) )  +P.  ( ( X  .P.  V )  +P.  ( W  .P.  V ) ) ) )
4541, 44eqtr4d 2075 . . . 4  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( X  .P.  V
)  +P.  ( Y  .P.  U ) )  +P.  ( ( Z  .P.  U )  +P.  ( W  .P.  V ) ) )  =  ( ( ( Z  +P.  Y
)  .P.  U )  +P.  ( ( X  +P.  W )  .P.  V ) ) )
4632, 45breq12d 3777 . . 3  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( ( X  .P.  U )  +P.  ( Y  .P.  V ) )  +P.  ( ( Z  .P.  V )  +P.  ( W  .P.  U
) ) )  <P 
( ( ( X  .P.  V )  +P.  ( Y  .P.  U
) )  +P.  (
( Z  .P.  U
)  +P.  ( W  .P.  V ) ) )  <-> 
( ( ( X  +P.  W )  .P. 
U )  +P.  (
( Z  +P.  Y
)  .P.  V )
)  <P  ( ( ( Z  +P.  Y )  .P.  U )  +P.  ( ( X  +P.  W )  .P.  V ) ) ) )
4729, 20eqeltrd 2114 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( X  +P.  W )  .P. 
U )  e.  P. )
4830, 12eqeltrd 2114 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( Z  +P.  Y )  .P. 
V )  e.  P. )
49 addclpr 6635 . . . . . . 7  |-  ( ( Z  e.  P.  /\  Y  e.  P. )  ->  ( Z  +P.  Y
)  e.  P. )
505, 9, 49syl2anc 391 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( Z  +P.  Y )  e.  P. )
51 mulclpr 6670 . . . . . 6  |-  ( ( ( Z  +P.  Y
)  e.  P.  /\  U  e.  P. )  ->  ( ( Z  +P.  Y )  .P.  U )  e.  P. )
5250, 14, 51syl2anc 391 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( Z  +P.  Y )  .P. 
U )  e.  P. )
53 addclpr 6635 . . . . . . 7  |-  ( ( X  e.  P.  /\  W  e.  P. )  ->  ( X  +P.  W
)  e.  P. )
5413, 17, 53syl2anc 391 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( X  +P.  W )  e.  P. )
55 mulclpr 6670 . . . . . 6  |-  ( ( ( X  +P.  W
)  e.  P.  /\  V  e.  P. )  ->  ( ( X  +P.  W )  .P.  V )  e.  P. )
5654, 6, 55syl2anc 391 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( X  +P.  W )  .P. 
V )  e.  P. )
57 addextpr 6719 . . . . 5  |-  ( ( ( ( ( X  +P.  W )  .P. 
U )  e.  P.  /\  ( ( Z  +P.  Y )  .P.  V )  e.  P. )  /\  ( ( ( Z  +P.  Y )  .P. 
U )  e.  P.  /\  ( ( X  +P.  W )  .P.  V )  e.  P. ) )  ->  ( ( ( ( X  +P.  W
)  .P.  U )  +P.  ( ( Z  +P.  Y )  .P.  V ) )  <P  ( (
( Z  +P.  Y
)  .P.  U )  +P.  ( ( X  +P.  W )  .P.  V ) )  ->  ( (
( X  +P.  W
)  .P.  U )  <P  ( ( Z  +P.  Y )  .P.  U )  \/  ( ( Z  +P.  Y )  .P. 
V )  <P  (
( X  +P.  W
)  .P.  V )
) ) )
5847, 48, 52, 56, 57syl22anc 1136 . . . 4  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( ( X  +P.  W )  .P.  U )  +P.  ( ( Z  +P.  Y )  .P. 
V ) )  <P 
( ( ( Z  +P.  Y )  .P. 
U )  +P.  (
( X  +P.  W
)  .P.  V )
)  ->  ( (
( X  +P.  W
)  .P.  U )  <P  ( ( Z  +P.  Y )  .P.  U )  \/  ( ( Z  +P.  Y )  .P. 
V )  <P  (
( X  +P.  W
)  .P.  V )
) ) )
59 mulcomprg 6678 . . . . . . . . 9  |-  ( ( ( X  +P.  W
)  e.  P.  /\  U  e.  P. )  ->  ( ( X  +P.  W )  .P.  U )  =  ( U  .P.  ( X  +P.  W ) ) )
60593adant2 923 . . . . . . . 8  |-  ( ( ( X  +P.  W
)  e.  P.  /\  ( Z  +P.  Y )  e.  P.  /\  U  e.  P. )  ->  (
( X  +P.  W
)  .P.  U )  =  ( U  .P.  ( X  +P.  W ) ) )
61 mulcomprg 6678 . . . . . . . . 9  |-  ( ( ( Z  +P.  Y
)  e.  P.  /\  U  e.  P. )  ->  ( ( Z  +P.  Y )  .P.  U )  =  ( U  .P.  ( Z  +P.  Y ) ) )
62613adant1 922 . . . . . . . 8  |-  ( ( ( X  +P.  W
)  e.  P.  /\  ( Z  +P.  Y )  e.  P.  /\  U  e.  P. )  ->  (
( Z  +P.  Y
)  .P.  U )  =  ( U  .P.  ( Z  +P.  Y ) ) )
6360, 62breq12d 3777 . . . . . . 7  |-  ( ( ( X  +P.  W
)  e.  P.  /\  ( Z  +P.  Y )  e.  P.  /\  U  e.  P. )  ->  (
( ( X  +P.  W )  .P.  U ) 
<P  ( ( Z  +P.  Y )  .P.  U )  <-> 
( U  .P.  ( X  +P.  W ) ) 
<P  ( U  .P.  ( Z  +P.  Y ) ) ) )
64 ltmprr 6740 . . . . . . 7  |-  ( ( ( X  +P.  W
)  e.  P.  /\  ( Z  +P.  Y )  e.  P.  /\  U  e.  P. )  ->  (
( U  .P.  ( X  +P.  W ) ) 
<P  ( U  .P.  ( Z  +P.  Y ) )  ->  ( X  +P.  W )  <P  ( Z  +P.  Y ) ) )
6563, 64sylbid 139 . . . . . 6  |-  ( ( ( X  +P.  W
)  e.  P.  /\  ( Z  +P.  Y )  e.  P.  /\  U  e.  P. )  ->  (
( ( X  +P.  W )  .P.  U ) 
<P  ( ( Z  +P.  Y )  .P.  U )  ->  ( X  +P.  W )  <P  ( Z  +P.  Y ) ) )
6654, 50, 14, 65syl3anc 1135 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( X  +P.  W
)  .P.  U )  <P  ( ( Z  +P.  Y )  .P.  U )  ->  ( X  +P.  W )  <P  ( Z  +P.  Y ) ) )
67 mulcomprg 6678 . . . . . . . 8  |-  ( ( ( Z  +P.  Y
)  e.  P.  /\  V  e.  P. )  ->  ( ( Z  +P.  Y )  .P.  V )  =  ( V  .P.  ( Z  +P.  Y ) ) )
6850, 6, 67syl2anc 391 . . . . . . 7  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( Z  +P.  Y )  .P. 
V )  =  ( V  .P.  ( Z  +P.  Y ) ) )
69 mulcomprg 6678 . . . . . . . 8  |-  ( ( ( X  +P.  W
)  e.  P.  /\  V  e.  P. )  ->  ( ( X  +P.  W )  .P.  V )  =  ( V  .P.  ( X  +P.  W ) ) )
7054, 6, 69syl2anc 391 . . . . . . 7  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( X  +P.  W )  .P. 
V )  =  ( V  .P.  ( X  +P.  W ) ) )
7168, 70breq12d 3777 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( Z  +P.  Y
)  .P.  V )  <P  ( ( X  +P.  W )  .P.  V )  <-> 
( V  .P.  ( Z  +P.  Y ) ) 
<P  ( V  .P.  ( X  +P.  W ) ) ) )
72 ltmprr 6740 . . . . . . 7  |-  ( ( ( Z  +P.  Y
)  e.  P.  /\  ( X  +P.  W )  e.  P.  /\  V  e.  P. )  ->  (
( V  .P.  ( Z  +P.  Y ) ) 
<P  ( V  .P.  ( X  +P.  W ) )  ->  ( Z  +P.  Y )  <P  ( X  +P.  W ) ) )
7350, 54, 6, 72syl3anc 1135 . . . . . 6  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( V  .P.  ( Z  +P.  Y ) )  <P  ( V  .P.  ( X  +P.  W ) )  ->  ( Z  +P.  Y )  <P 
( X  +P.  W
) ) )
7471, 73sylbid 139 . . . . 5  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( Z  +P.  Y
)  .P.  V )  <P  ( ( X  +P.  W )  .P.  V )  ->  ( Z  +P.  Y )  <P  ( X  +P.  W ) ) )
7566, 74orim12d 700 . . . 4  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( ( X  +P.  W )  .P.  U ) 
<P  ( ( Z  +P.  Y )  .P.  U )  \/  ( ( Z  +P.  Y )  .P. 
V )  <P  (
( X  +P.  W
)  .P.  V )
)  ->  ( ( X  +P.  W )  <P 
( Z  +P.  Y
)  \/  ( Z  +P.  Y )  <P 
( X  +P.  W
) ) ) )
7658, 75syld 40 . . 3  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( ( X  +P.  W )  .P.  U )  +P.  ( ( Z  +P.  Y )  .P. 
V ) )  <P 
( ( ( Z  +P.  Y )  .P. 
U )  +P.  (
( X  +P.  W
)  .P.  V )
)  ->  ( ( X  +P.  W )  <P 
( Z  +P.  Y
)  \/  ( Z  +P.  Y )  <P 
( X  +P.  W
) ) ) )
7746, 76sylbid 139 . 2  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( ( X  .P.  U )  +P.  ( Y  .P.  V ) )  +P.  ( ( Z  .P.  V )  +P.  ( W  .P.  U
) ) )  <P 
( ( ( X  .P.  V )  +P.  ( Y  .P.  U
) )  +P.  (
( Z  .P.  U
)  +P.  ( W  .P.  V ) ) )  ->  ( ( X  +P.  W )  <P 
( Z  +P.  Y
)  \/  ( Z  +P.  Y )  <P 
( X  +P.  W
) ) ) )
78 addcomprg 6676 . . . . 5  |-  ( ( Z  e.  P.  /\  Y  e.  P. )  ->  ( Z  +P.  Y
)  =  ( Y  +P.  Z ) )
795, 9, 78syl2anc 391 . . . 4  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( Z  +P.  Y )  =  ( Y  +P.  Z ) )
8079breq2d 3776 . . 3  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( X  +P.  W )  <P 
( Z  +P.  Y
)  <->  ( X  +P.  W )  <P  ( Y  +P.  Z ) ) )
81 addcomprg 6676 . . . . 5  |-  ( ( X  e.  P.  /\  W  e.  P. )  ->  ( X  +P.  W
)  =  ( W  +P.  X ) )
8213, 17, 81syl2anc 391 . . . 4  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( X  +P.  W )  =  ( W  +P.  X ) )
8382breq2d 3776 . . 3  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( ( Z  +P.  Y )  <P 
( X  +P.  W
)  <->  ( Z  +P.  Y )  <P  ( W  +P.  X ) ) )
8480, 83orbi12d 707 . 2  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( X  +P.  W
)  <P  ( Z  +P.  Y )  \/  ( Z  +P.  Y )  <P 
( X  +P.  W
) )  <->  ( ( X  +P.  W )  <P 
( Y  +P.  Z
)  \/  ( Z  +P.  Y )  <P 
( W  +P.  X
) ) ) )
8577, 84sylibd 138 1  |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. )
)  ->  ( (
( ( X  .P.  U )  +P.  ( Y  .P.  V ) )  +P.  ( ( Z  .P.  V )  +P.  ( W  .P.  U
) ) )  <P 
( ( ( X  .P.  V )  +P.  ( Y  .P.  U
) )  +P.  (
( Z  .P.  U
)  +P.  ( W  .P.  V ) ) )  ->  ( ( X  +P.  W )  <P 
( Y  +P.  Z
)  \/  ( Z  +P.  Y )  <P 
( W  +P.  X
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    \/ wo 629    /\ w3a 885    = wceq 1243    e. wcel 1393   class class class wbr 3764  (class class class)co 5512   P.cnp 6389    +P. cpp 6391    .P. cmp 6392    <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-imp 6567  df-iltp 6568
This theorem is referenced by:  mulextsr1  6865
  Copyright terms: Public domain W3C validator