ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsnunf Unicode version

Theorem fsnunf 5362
Description: Adjoining a point to a function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fsnunf  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> T )

Proof of Theorem fsnunf
StepHypRef Expression
1 simp1 904 . . 3  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  F : S --> T )
2 simp2l 930 . . . . 5  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  X  e.  V )
3 simp3 906 . . . . 5  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  Y  e.  T )
4 f1osng 5167 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  T )  ->  { <. X ,  Y >. } : { X }
-1-1-onto-> { Y } )
52, 3, 4syl2anc 391 . . . 4  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  { <. X ,  Y >. } : { X } -1-1-onto-> { Y } )
6 f1of 5126 . . . 4  |-  ( {
<. X ,  Y >. } : { X } -1-1-onto-> { Y }  ->  { <. X ,  Y >. } : { X } --> { Y } )
75, 6syl 14 . . 3  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  { <. X ,  Y >. } : { X } --> { Y } )
8 simp2r 931 . . . 4  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  -.  X  e.  S )
9 disjsn 3432 . . . 4  |-  ( ( S  i^i  { X } )  =  (/)  <->  -.  X  e.  S )
108, 9sylibr 137 . . 3  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( S  i^i  { X }
)  =  (/) )
11 fun 5063 . . 3  |-  ( ( ( F : S --> T  /\  { <. X ,  Y >. } : { X } --> { Y }
)  /\  ( S  i^i  { X } )  =  (/) )  ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> ( T  u.  { Y }
) )
121, 7, 10, 11syl21anc 1134 . 2  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> ( T  u.  { Y }
) )
13 snssi 3508 . . . . 5  |-  ( Y  e.  T  ->  { Y }  C_  T )
14133ad2ant3 927 . . . 4  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  { Y }  C_  T )
15 ssequn2 3116 . . . 4  |-  ( { Y }  C_  T  <->  ( T  u.  { Y } )  =  T )
1614, 15sylib 127 . . 3  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( T  u.  { Y } )  =  T )
17 feq3 5032 . . 3  |-  ( ( T  u.  { Y } )  =  T  ->  ( ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> ( T  u.  { Y }
)  <->  ( F  u.  {
<. X ,  Y >. } ) : ( S  u.  { X }
) --> T ) )
1816, 17syl 14 . 2  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  (
( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X }
) --> ( T  u.  { Y } )  <->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> T ) )
1912, 18mpbid 135 1  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> T )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393    u. cun 2915    i^i cin 2916    C_ wss 2917   (/)c0 3224   {csn 3375   <.cop 3378   -->wf 4898   -1-1-onto->wf1o 4901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator