ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1cnvcnv Unicode version

Theorem f1cnvcnv 5100
Description: Two ways to express that a set  A (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
f1cnvcnv  |-  ( `' `' A : dom  A -1-1-> _V  <->  ( Fun  `' A  /\  Fun  `' `' A ) )

Proof of Theorem f1cnvcnv
StepHypRef Expression
1 df-f1 4907 . 2  |-  ( `' `' A : dom  A -1-1-> _V  <->  ( `' `' A : dom  A --> _V  /\  Fun  `' `' `' A ) )
2 dffn2 5047 . . . 4  |-  ( `' `' A  Fn  dom  A  <->  `' `' A : dom  A --> _V )
3 dmcnvcnv 4558 . . . . 5  |-  dom  `' `' A  =  dom  A
4 df-fn 4905 . . . . 5  |-  ( `' `' A  Fn  dom  A  <-> 
( Fun  `' `' A  /\  dom  `' `' A  =  dom  A ) )
53, 4mpbiran2 848 . . . 4  |-  ( `' `' A  Fn  dom  A  <->  Fun  `' `' A )
62, 5bitr3i 175 . . 3  |-  ( `' `' A : dom  A --> _V 
<->  Fun  `' `' A
)
7 relcnv 4703 . . . . 5  |-  Rel  `' A
8 dfrel2 4771 . . . . 5  |-  ( Rel  `' A  <->  `' `' `' A  =  `' A )
97, 8mpbi 133 . . . 4  |-  `' `' `' A  =  `' A
109funeqi 4922 . . 3  |-  ( Fun  `' `' `' A  <->  Fun  `' A )
116, 10anbi12ci 434 . 2  |-  ( ( `' `' A : dom  A --> _V  /\  Fun  `' `' `' A )  <->  ( Fun  `' A  /\  Fun  `' `' A ) )
121, 11bitri 173 1  |-  ( `' `' A : dom  A -1-1-> _V  <->  ( Fun  `' A  /\  Fun  `' `' A ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    = wceq 1243   _Vcvv 2557   `'ccnv 4344   dom cdm 4345   Rel wrel 4350   Fun wfun 4896    Fn wfn 4897   -->wf 4898   -1-1->wf1 4899
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator