Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1cnvcnv | Unicode version |
Description: Two ways to express that a set (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
f1cnvcnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1 4907 | . 2 | |
2 | dffn2 5047 | . . . 4 | |
3 | dmcnvcnv 4558 | . . . . 5 | |
4 | df-fn 4905 | . . . . 5 | |
5 | 3, 4 | mpbiran2 848 | . . . 4 |
6 | 2, 5 | bitr3i 175 | . . 3 |
7 | relcnv 4703 | . . . . 5 | |
8 | dfrel2 4771 | . . . . 5 | |
9 | 7, 8 | mpbi 133 | . . . 4 |
10 | 9 | funeqi 4922 | . . 3 |
11 | 6, 10 | anbi12ci 434 | . 2 |
12 | 1, 11 | bitri 173 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 97 wb 98 wceq 1243 cvv 2557 ccnv 4344 cdm 4345 wrel 4350 wfun 4896 wfn 4897 wf 4898 wf1 4899 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |