ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elvvv Unicode version

Theorem elvvv 4390
Description: Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
elvvv  |-  ( A  e.  ( ( _V 
X.  _V )  X.  _V ) 
<->  E. x E. y E. z  A  =  <. <. x ,  y
>. ,  z >. )
Distinct variable group:    x, y, z, A

Proof of Theorem elvvv
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elxp 4349 . 2  |-  ( A  e.  ( ( _V 
X.  _V )  X.  _V ) 
<->  E. w E. z
( A  =  <. w ,  z >.  /\  (
w  e.  ( _V 
X.  _V )  /\  z  e.  _V ) ) )
2 anass 381 . . . . 5  |-  ( ( ( A  =  <. w ,  z >.  /\  w  e.  ( _V  X.  _V ) )  /\  z  e.  _V )  <->  ( A  =  <. w ,  z
>.  /\  ( w  e.  ( _V  X.  _V )  /\  z  e.  _V ) ) )
3 19.42vv 1788 . . . . . 6  |-  ( E. x E. y ( A  =  <. w ,  z >.  /\  w  =  <. x ,  y
>. )  <->  ( A  = 
<. w ,  z >.  /\  E. x E. y  w  =  <. x ,  y >. ) )
4 ancom 253 . . . . . . 7  |-  ( ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  ( A  = 
<. w ,  z >.  /\  w  =  <. x ,  y >. )
)
542exbii 1497 . . . . . 6  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. x E. y
( A  =  <. w ,  z >.  /\  w  =  <. x ,  y
>. ) )
6 vex 2557 . . . . . . . 8  |-  z  e. 
_V
76biantru 286 . . . . . . 7  |-  ( ( A  =  <. w ,  z >.  /\  w  e.  ( _V  X.  _V ) )  <->  ( ( A  =  <. w ,  z >.  /\  w  e.  ( _V  X.  _V ) )  /\  z  e.  _V ) )
8 elvv 4389 . . . . . . . 8  |-  ( w  e.  ( _V  X.  _V )  <->  E. x E. y  w  =  <. x ,  y >. )
98anbi2i 430 . . . . . . 7  |-  ( ( A  =  <. w ,  z >.  /\  w  e.  ( _V  X.  _V ) )  <->  ( A  =  <. w ,  z
>.  /\  E. x E. y  w  =  <. x ,  y >. )
)
107, 9bitr3i 175 . . . . . 6  |-  ( ( ( A  =  <. w ,  z >.  /\  w  e.  ( _V  X.  _V ) )  /\  z  e.  _V )  <->  ( A  =  <. w ,  z
>.  /\  E. x E. y  w  =  <. x ,  y >. )
)
113, 5, 103bitr4ri 202 . . . . 5  |-  ( ( ( A  =  <. w ,  z >.  /\  w  e.  ( _V  X.  _V ) )  /\  z  e.  _V )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  A  =  <. w ,  z >. )
)
122, 11bitr3i 175 . . . 4  |-  ( ( A  =  <. w ,  z >.  /\  (
w  e.  ( _V 
X.  _V )  /\  z  e.  _V ) )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  A  =  <. w ,  z >. )
)
13122exbii 1497 . . 3  |-  ( E. w E. z ( A  =  <. w ,  z >.  /\  (
w  e.  ( _V 
X.  _V )  /\  z  e.  _V ) )  <->  E. w E. z E. x E. y ( w  = 
<. x ,  y >.  /\  A  =  <. w ,  z >. )
)
14 exrot4 1581 . . . 4  |-  ( E. x E. y E. w E. z ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. w E. z E. x E. y ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. ) )
15 excom 1554 . . . . . 6  |-  ( E. w E. z ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. z E. w
( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. ) )
16 vex 2557 . . . . . . . . 9  |-  x  e. 
_V
17 vex 2557 . . . . . . . . 9  |-  y  e. 
_V
1816, 17opex 3963 . . . . . . . 8  |-  <. x ,  y >.  e.  _V
19 opeq1 3546 . . . . . . . . 9  |-  ( w  =  <. x ,  y
>.  ->  <. w ,  z
>.  =  <. <. x ,  y >. ,  z
>. )
2019eqeq2d 2051 . . . . . . . 8  |-  ( w  =  <. x ,  y
>.  ->  ( A  = 
<. w ,  z >.  <->  A  =  <. <. x ,  y
>. ,  z >. ) )
2118, 20ceqsexv 2590 . . . . . . 7  |-  ( E. w ( w  = 
<. x ,  y >.  /\  A  =  <. w ,  z >. )  <->  A  =  <. <. x ,  y
>. ,  z >. )
2221exbii 1496 . . . . . 6  |-  ( E. z E. w ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. z  A  = 
<. <. x ,  y
>. ,  z >. )
2315, 22bitri 173 . . . . 5  |-  ( E. w E. z ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. z  A  = 
<. <. x ,  y
>. ,  z >. )
24232exbii 1497 . . . 4  |-  ( E. x E. y E. w E. z ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. x E. y E. z  A  =  <. <. x ,  y
>. ,  z >. )
2514, 24bitr3i 175 . . 3  |-  ( E. w E. z E. x E. y ( w  =  <. x ,  y >.  /\  A  =  <. w ,  z
>. )  <->  E. x E. y E. z  A  =  <. <. x ,  y
>. ,  z >. )
2613, 25bitri 173 . 2  |-  ( E. w E. z ( A  =  <. w ,  z >.  /\  (
w  e.  ( _V 
X.  _V )  /\  z  e.  _V ) )  <->  E. x E. y E. z  A  =  <. <. x ,  y
>. ,  z >. )
271, 26bitri 173 1  |-  ( A  e.  ( ( _V 
X.  _V )  X.  _V ) 
<->  E. x E. y E. z  A  =  <. <. x ,  y
>. ,  z >. )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2554   <.cop 3375    X. cxp 4330
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3872  ax-pow 3924  ax-pr 3941
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2556  df-un 2919  df-in 2921  df-ss 2928  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-opab 3816  df-xp 4338
This theorem is referenced by:  ssrelrel  4427  dftpos3  5864
  Copyright terms: Public domain W3C validator