ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coundi Unicode version

Theorem coundi 4768
Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
coundi  o.  u.  C  o.  u.  o.  C

Proof of Theorem coundi
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopab 3830 . . 3  { <. ,  >.  |  }  u.  {
<. ,  >.  |  C  }  { <. ,  >.  |  C  }
2 brun 3804 . . . . . . . 8  u.  C  C
32anbi1i 431 . . . . . . 7  u.  C  C
4 andir 732 . . . . . . 7  C  C
53, 4bitri 173 . . . . . 6  u.  C  C
65exbii 1496 . . . . 5  u.  C  C
7 19.43 1519 . . . . 5  C  C
86, 7bitr2i 174 . . . 4  C  u.  C
98opabbii 3818 . . 3  { <. ,  >.  |  C  }  { <. ,  >.  |  u.  C  }
101, 9eqtri 2060 . 2  { <. ,  >.  |  }  u.  {
<. ,  >.  |  C  }  { <. ,  >.  |  u.  C  }
11 df-co 4300 . . 3  o.  { <. , 
>.  |  }
12 df-co 4300 . . 3  o.  C  { <. , 
>.  |  C  }
1311, 12uneq12i 3092 . 2  o.  u.  o.  C  { <. ,  >.  |  }  u.  { <. ,  >.  |  C  }
14 df-co 4300 . 2  o.  u.  C  { <. , 
>.  |  u.  C  }
1510, 13, 143eqtr4ri 2071 1  o.  u.  C  o.  u.  o.  C
Colors of variables: wff set class
Syntax hints:   wa 97   wo 629   wceq 1243  wex 1381    u. cun 2912   class class class wbr 3758   {copab 3811    o. ccom 4295
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2556  df-un 2919  df-br 3759  df-opab 3813  df-co 4300
This theorem is referenced by:  relcoi1  4795
  Copyright terms: Public domain W3C validator