ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relcoi1 Unicode version

Theorem relcoi1 4849
Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 8-May-2011.)
Assertion
Ref Expression
relcoi1  |-  ( Rel 
R  ->  ( R  o.  (  _I  |`  U. U. R ) )  =  R )

Proof of Theorem relcoi1
StepHypRef Expression
1 relfld 4846 . . 3  |-  ( Rel 
R  ->  U. U. R  =  ( dom  R  u.  ran  R ) )
2 resundi 4625 . . . . 5  |-  (  _I  |`  ( dom  R  u.  ran  R ) )  =  ( (  _I  |`  dom  R
)  u.  (  _I  |`  ran  R ) )
3 coeq2 4494 . . . . 5  |-  ( (  _I  |`  ( dom  R  u.  ran  R ) )  =  ( (  _I  |`  dom  R )  u.  (  _I  |`  ran  R
) )  ->  ( R  o.  (  _I  |`  ( dom  R  u.  ran  R ) ) )  =  ( R  o.  ( (  _I  |`  dom  R
)  u.  (  _I  |`  ran  R ) ) ) )
4 coundi 4822 . . . . . . 7  |-  ( R  o.  ( (  _I  |`  dom  R )  u.  (  _I  |`  ran  R
) ) )  =  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )
5 resco 4825 . . . . . . . 8  |-  ( ( R  o.  _I  )  |` 
dom  R )  =  ( R  o.  (  _I  |`  dom  R ) )
6 coi1 4836 . . . . . . . . 9  |-  ( Rel 
R  ->  ( R  o.  _I  )  =  R )
7 reseq1 4606 . . . . . . . . . 10  |-  ( ( R  o.  _I  )  =  R  ->  ( ( R  o.  _I  )  |` 
dom  R )  =  ( R  |`  dom  R
) )
8 resdm 4649 . . . . . . . . . . 11  |-  ( Rel 
R  ->  ( R  |` 
dom  R )  =  R )
9 eqtr 2057 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  o.  _I  )  |`  dom  R
)  =  ( R  |`  dom  R )  /\  ( R  |`  dom  R
)  =  R )  ->  ( ( R  o.  _I  )  |`  dom  R )  =  R )
10 eqtr 2057 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  o.  (  _I  |`  dom  R ) )  =  ( ( R  o.  _I  )  |` 
dom  R )  /\  ( ( R  o.  _I  )  |`  dom  R
)  =  R )  ->  ( R  o.  (  _I  |`  dom  R
) )  =  R )
11 resco 4825 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  o.  _I  )  |` 
ran  R )  =  ( R  o.  (  _I  |`  ran  R ) )
12 uneq1 3090 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  o.  (  _I  |`  dom  R ) )  =  R  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  o.  (  _I  |` 
ran  R ) ) ) )
13 reseq1 4606 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  o.  _I  )  =  R  ->  ( ( R  o.  _I  )  |` 
ran  R )  =  ( R  |`  ran  R
) )
14 eqtr 2057 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( R  o.  (  _I  |`  ran  R ) )  =  ( ( R  o.  _I  )  |` 
ran  R )  /\  ( ( R  o.  _I  )  |`  ran  R
)  =  ( R  |`  ran  R ) )  ->  ( R  o.  (  _I  |`  ran  R
) )  =  ( R  |`  ran  R ) )
1514uneq2d 3097 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( R  o.  (  _I  |`  ran  R ) )  =  ( ( R  o.  _I  )  |` 
ran  R )  /\  ( ( R  o.  _I  )  |`  ran  R
)  =  ( R  |`  ran  R ) )  ->  ( R  u.  ( R  o.  (  _I  |`  ran  R ) ) )  =  ( R  u.  ( R  |`  ran  R ) ) )
16 eqtr 2057 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  /\  ( R  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  |`  ran  R ) ) )  ->  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  |`  ran  R ) ) )
17 resss 4635 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( R  |`  ran  R )  C_  R
18 ssequn2 3116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( R  |`  ran  R ) 
C_  R  <->  ( R  u.  ( R  |`  ran  R
) )  =  R )
1917, 18mpbi 133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( R  u.  ( R  |`  ran  R ) )  =  R
206, 19syl6reqr 2091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( Rel 
R  ->  ( R  u.  ( R  |`  ran  R
) )  =  ( R  o.  _I  )
)
21 eqeq1 2046 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  |`  ran  R ) )  ->  ( (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) 
<->  ( R  u.  ( R  |`  ran  R ) )  =  ( R  o.  _I  ) ) )
2220, 21syl5ibr 145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  |`  ran  R ) )  ->  ( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) )
2316, 22syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  /\  ( R  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  |`  ran  R ) ) )  ->  ( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) )
2423ex 108 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  ->  ( ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  |`  ran  R ) )  ->  ( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) )
2524com3l 75 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  |`  ran  R ) )  ->  ( Rel  R  ->  ( ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  ->  ( ( R  o.  (  _I  |` 
dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
2615, 25syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( R  o.  (  _I  |`  ran  R ) )  =  ( ( R  o.  _I  )  |` 
ran  R )  /\  ( ( R  o.  _I  )  |`  ran  R
)  =  ( R  |`  ran  R ) )  ->  ( Rel  R  ->  ( ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) )
2726ex 108 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( R  o.  (  _I  |`  ran  R ) )  =  ( ( R  o.  _I  )  |`  ran  R )  ->  (
( ( R  o.  _I  )  |`  ran  R
)  =  ( R  |`  ran  R )  -> 
( Rel  R  ->  ( ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) ) )
2827eqcoms 2043 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( R  o.  _I  )  |`  ran  R )  =  ( R  o.  (  _I  |`  ran  R
) )  ->  (
( ( R  o.  _I  )  |`  ran  R
)  =  ( R  |`  ran  R )  -> 
( Rel  R  ->  ( ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) ) )
2928com3l 75 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( R  o.  _I  )  |`  ran  R )  =  ( R  |`  ran  R )  ->  ( Rel  R  ->  ( (
( R  o.  _I  )  |`  ran  R )  =  ( R  o.  (  _I  |`  ran  R
) )  ->  (
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) ) )
3013, 29syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  o.  _I  )  =  R  ->  ( Rel 
R  ->  ( (
( R  o.  _I  )  |`  ran  R )  =  ( R  o.  (  _I  |`  ran  R
) )  ->  (
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) ) )
316, 30mpcom 32 . . . . . . . . . . . . . . . . . . . 20  |-  ( Rel 
R  ->  ( (
( R  o.  _I  )  |`  ran  R )  =  ( R  o.  (  _I  |`  ran  R
) )  ->  (
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) )
3231com3l 75 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  o.  _I  )  |`  ran  R )  =  ( R  o.  (  _I  |`  ran  R
) )  ->  (
( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  u.  ( R  o.  (  _I  |`  ran  R
) ) )  -> 
( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
3311, 12, 32mpsyl 59 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  o.  (  _I  |`  dom  R ) )  =  R  ->  ( Rel  R  ->  ( ( R  o.  (  _I  |` 
dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) )
3410, 33syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  o.  (  _I  |`  dom  R ) )  =  ( ( R  o.  _I  )  |` 
dom  R )  /\  ( ( R  o.  _I  )  |`  dom  R
)  =  R )  ->  ( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) )
3534ex 108 . . . . . . . . . . . . . . . 16  |-  ( ( R  o.  (  _I  |`  dom  R ) )  =  ( ( R  o.  _I  )  |`  dom  R )  ->  (
( ( R  o.  _I  )  |`  dom  R
)  =  R  -> 
( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
3635eqcoms 2043 . . . . . . . . . . . . . . 15  |-  ( ( ( R  o.  _I  )  |`  dom  R )  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( ( R  o.  _I  )  |`  dom  R
)  =  R  -> 
( Rel  R  ->  ( ( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
3736com3l 75 . . . . . . . . . . . . . 14  |-  ( ( ( R  o.  _I  )  |`  dom  R )  =  R  ->  ( Rel  R  ->  ( (
( R  o.  _I  )  |`  dom  R )  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
389, 37syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( R  o.  _I  )  |`  dom  R
)  =  ( R  |`  dom  R )  /\  ( R  |`  dom  R
)  =  R )  ->  ( Rel  R  ->  ( ( ( R  o.  _I  )  |`  dom  R )  =  ( R  o.  (  _I  |`  dom  R ) )  ->  ( ( R  o.  (  _I  |`  dom  R
) )  u.  ( R  o.  (  _I  |` 
ran  R ) ) )  =  ( R  o.  _I  ) ) ) )
3938ex 108 . . . . . . . . . . . 12  |-  ( ( ( R  o.  _I  )  |`  dom  R )  =  ( R  |`  dom  R )  ->  (
( R  |`  dom  R
)  =  R  -> 
( Rel  R  ->  ( ( ( R  o.  _I  )  |`  dom  R
)  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) ) )
4039com3l 75 . . . . . . . . . . 11  |-  ( ( R  |`  dom  R )  =  R  ->  ( Rel  R  ->  ( (
( R  o.  _I  )  |`  dom  R )  =  ( R  |`  dom  R )  ->  (
( ( R  o.  _I  )  |`  dom  R
)  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) ) )
418, 40mpcom 32 . . . . . . . . . 10  |-  ( Rel 
R  ->  ( (
( R  o.  _I  )  |`  dom  R )  =  ( R  |`  dom  R )  ->  (
( ( R  o.  _I  )  |`  dom  R
)  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
427, 41syl5com 26 . . . . . . . . 9  |-  ( ( R  o.  _I  )  =  R  ->  ( Rel 
R  ->  ( (
( R  o.  _I  )  |`  dom  R )  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) ) )
436, 42mpcom 32 . . . . . . . 8  |-  ( Rel 
R  ->  ( (
( R  o.  _I  )  |`  dom  R )  =  ( R  o.  (  _I  |`  dom  R
) )  ->  (
( R  o.  (  _I  |`  dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) ) )
445, 43mpi 15 . . . . . . 7  |-  ( Rel 
R  ->  ( ( R  o.  (  _I  |` 
dom  R ) )  u.  ( R  o.  (  _I  |`  ran  R
) ) )  =  ( R  o.  _I  ) )
454, 44syl5eq 2084 . . . . . 6  |-  ( Rel 
R  ->  ( R  o.  ( (  _I  |`  dom  R
)  u.  (  _I  |`  ran  R ) ) )  =  ( R  o.  _I  ) )
46 eqeq1 2046 . . . . . 6  |-  ( ( R  o.  (  _I  |`  ( dom  R  u.  ran  R ) ) )  =  ( R  o.  ( (  _I  |`  dom  R
)  u.  (  _I  |`  ran  R ) ) )  ->  ( ( R  o.  (  _I  |`  ( dom  R  u.  ran  R ) ) )  =  ( R  o.  _I  )  <->  ( R  o.  ( (  _I  |`  dom  R
)  u.  (  _I  |`  ran  R ) ) )  =  ( R  o.  _I  ) ) )
4745, 46syl5ibr 145 . . . . 5  |-  ( ( R  o.  (  _I  |`  ( dom  R  u.  ran  R ) ) )  =  ( R  o.  ( (  _I  |`  dom  R
)  u.  (  _I  |`  ran  R ) ) )  ->  ( Rel  R  ->  ( R  o.  (  _I  |`  ( dom 
R  u.  ran  R
) ) )  =  ( R  o.  _I  ) ) )
482, 3, 47mp2b 8 . . . 4  |-  ( Rel 
R  ->  ( R  o.  (  _I  |`  ( dom  R  u.  ran  R
) ) )  =  ( R  o.  _I  ) )
49 reseq2 4607 . . . . . 6  |-  ( U. U. R  =  ( dom 
R  u.  ran  R
)  ->  (  _I  |` 
U. U. R )  =  (  _I  |`  ( dom  R  u.  ran  R
) ) )
5049coeq2d 4498 . . . . 5  |-  ( U. U. R  =  ( dom 
R  u.  ran  R
)  ->  ( R  o.  (  _I  |`  U. U. R ) )  =  ( R  o.  (  _I  |`  ( dom  R  u.  ran  R ) ) ) )
5150eqeq1d 2048 . . . 4  |-  ( U. U. R  =  ( dom 
R  u.  ran  R
)  ->  ( ( R  o.  (  _I  |` 
U. U. R ) )  =  ( R  o.  _I  )  <->  ( R  o.  (  _I  |`  ( dom 
R  u.  ran  R
) ) )  =  ( R  o.  _I  ) ) )
5248, 51syl5ibr 145 . . 3  |-  ( U. U. R  =  ( dom 
R  u.  ran  R
)  ->  ( Rel  R  ->  ( R  o.  (  _I  |`  U. U. R ) )  =  ( R  o.  _I  ) ) )
531, 52mpcom 32 . 2  |-  ( Rel 
R  ->  ( R  o.  (  _I  |`  U. U. R ) )  =  ( R  o.  _I  ) )
5453, 6eqtrd 2072 1  |-  ( Rel 
R  ->  ( R  o.  (  _I  |`  U. U. R ) )  =  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    u. cun 2915    C_ wss 2917   U.cuni 3580    _I cid 4025   dom cdm 4345   ran crn 4346    |` cres 4347    o. ccom 4349   Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator