| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvresima | Unicode version | ||
| Description: An image under the converse of a restriction. (Contributed by Jeff Hankins, 12-Jul-2009.) |
| Ref | Expression |
|---|---|
| cnvresima |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2560 |
. . . 4
| |
| 2 | 1 | elima3 4675 |
. . 3
|
| 3 | 1 | elima3 4675 |
. . . . 5
|
| 4 | 3 | anbi1i 431 |
. . . 4
|
| 5 | elin 3126 |
. . . 4
| |
| 6 | vex 2560 |
. . . . . . . . . 10
| |
| 7 | 6, 1 | opelcnv 4517 |
. . . . . . . . 9
|
| 8 | 6 | opelres 4617 |
. . . . . . . . . 10
|
| 9 | 6, 1 | opelcnv 4517 |
. . . . . . . . . . 11
|
| 10 | 9 | anbi1i 431 |
. . . . . . . . . 10
|
| 11 | 8, 10 | bitr4i 176 |
. . . . . . . . 9
|
| 12 | 7, 11 | bitri 173 |
. . . . . . . 8
|
| 13 | 12 | anbi2i 430 |
. . . . . . 7
|
| 14 | anass 381 |
. . . . . . 7
| |
| 15 | 13, 14 | bitr4i 176 |
. . . . . 6
|
| 16 | 15 | exbii 1496 |
. . . . 5
|
| 17 | 19.41v 1782 |
. . . . 5
| |
| 18 | 16, 17 | bitri 173 |
. . . 4
|
| 19 | 4, 5, 18 | 3bitr4ri 202 |
. . 3
|
| 20 | 2, 19 | bitri 173 |
. 2
|
| 21 | 20 | eqriv 2037 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
| This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-xp 4351 df-cnv 4353 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |