Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0zd | Unicode version |
Description: Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
0zd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 8256 | . 2 | |
2 | 1 | a1i 9 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 1393 cc0 6889 cz 8245 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-1re 6978 ax-addrcl 6981 ax-rnegex 6993 |
This theorem depends on definitions: df-bi 110 df-3or 886 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-iota 4867 df-fv 4910 df-ov 5515 df-neg 7185 df-z 8246 |
This theorem is referenced by: fzctr 8991 fzosubel3 9052 frecfzennn 9203 frechashgf1o 9205 exp0 9259 fzomaxdiflem 9708 nn0seqcvgd 9880 ialginv 9886 ialgcvg 9887 ialgcvga 9890 ialgfx 9891 |
Copyright terms: Public domain | W3C validator |