ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucunielr Structured version   GIF version

Theorem sucunielr 4200
Description: Successor and union. The converse (where B is an ordinal) implies excluded middle, as seen at ordsucunielexmid 4215. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
sucunielr (suc A BA B)

Proof of Theorem sucunielr
StepHypRef Expression
1 elex 2560 . . . 4 (suc A B → suc A V)
2 sucexb 4188 . . . 4 (A V ↔ suc A V)
31, 2sylibr 137 . . 3 (suc A BA V)
4 sucidg 4118 . . 3 (A V → A suc A)
53, 4syl 14 . 2 (suc A BA suc A)
6 elunii 3575 . 2 ((A suc A suc A B) → A B)
75, 6mpancom 399 1 (suc A BA B)
Colors of variables: wff set class
Syntax hints:  wi 4   wcel 1390  Vcvv 2551   cuni 3570  suc csuc 4067
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3865  ax-pow 3917  ax-pr 3934  ax-un 4135
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3352  df-sn 3372  df-pr 3373  df-uni 3571  df-suc 4073
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator