ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucsssucr Structured version   GIF version

Theorem onsucsssucr 4182
Description: The subclass relationship between two ordinals is inherited by their predecessors. The converse implies excluded middle, as shown at onsucsssucexmid 4194. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.)
Assertion
Ref Expression
onsucsssucr ((A On Ord B) → (suc A ⊆ suc BAB))

Proof of Theorem onsucsssucr
StepHypRef Expression
1 ordsucim 4174 . . 3 (Ord B → Ord suc B)
2 ordelsuc 4179 . . 3 ((A On Ord suc B) → (A suc B ↔ suc A ⊆ suc B))
31, 2sylan2 270 . 2 ((A On Ord B) → (A suc B ↔ suc A ⊆ suc B))
4 ordtr 4062 . . . 4 (Ord B → Tr B)
5 trsucss 4108 . . . 4 (Tr B → (A suc BAB))
64, 5syl 14 . . 3 (Ord B → (A suc BAB))
76adantl 262 . 2 ((A On Ord B) → (A suc BAB))
83, 7sylbird 159 1 ((A On Ord B) → (suc A ⊆ suc BAB))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   wcel 1375  wss 2893  Tr wtr 3827  Ord word 4046  Oncon0 4047  suc csuc 4049
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1364  ax-ie2 1365  ax-8 1377  ax-10 1378  ax-11 1379  ax-i12 1380  ax-bnd 1381  ax-4 1382  ax-17 1401  ax-i9 1405  ax-ial 1410  ax-i5r 1411  ax-ext 2005
This theorem depends on definitions:  df-bi 110  df-3an 875  df-tru 1231  df-nf 1330  df-sb 1629  df-clab 2010  df-cleq 2016  df-clel 2019  df-nfc 2150  df-ral 2288  df-rex 2289  df-v 2536  df-un 2898  df-in 2900  df-ss 2907  df-sn 3355  df-uni 3554  df-tr 3828  df-iord 4050  df-suc 4055
This theorem is referenced by:  nnsucsssuc  5981
  Copyright terms: Public domain W3C validator