Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2 GIF version

Theorem sbco2 1839
 Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
sbco2.1 𝑧𝜑
Assertion
Ref Expression
sbco2 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)

Proof of Theorem sbco2
StepHypRef Expression
1 sbco2.1 . . 3 𝑧𝜑
21nfri 1412 . 2 (𝜑 → ∀𝑧𝜑)
32sbco2h 1838 1 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
 Colors of variables: wff set class Syntax hints:   ↔ wb 98  Ⅎwnf 1349  [wsb 1645 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646 This theorem is referenced by:  nfsbt  1850  sb7af  1869  sbco4lem  1882  sbco4  1883  eqsb3  2141  clelsb3  2142  clelsb4  2143  sb8ab  2159  sbralie  2546  sbcco  2785
 Copyright terms: Public domain W3C validator