![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sb7af | GIF version |
Description: An alternative definition of proper substitution df-sb 1646. Similar to dfsb7a 1870 but does not require that 𝜑 and 𝑧 be distinct. Similar to sb7f 1868 in that it involves a dummy variable 𝑧, but expressed in terms of ∀ rather than ∃. (Contributed by Jim Kingdon, 5-Feb-2018.) |
Ref | Expression |
---|---|
sb7af.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
sb7af | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 1766 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑧 → 𝜑)) | |
2 | 1 | sbbii 1648 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧]∀𝑥(𝑥 = 𝑧 → 𝜑)) |
3 | sb7af.1 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
4 | 3 | sbco2 1839 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
5 | sb6 1766 | . 2 ⊢ ([𝑦 / 𝑧]∀𝑥(𝑥 = 𝑧 → 𝜑) ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) | |
6 | 2, 4, 5 | 3bitr3i 199 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 ∀wal 1241 Ⅎwnf 1349 [wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 |
This theorem is referenced by: dfsb7a 1870 |
Copyright terms: Public domain | W3C validator |