ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb7f GIF version

Theorem sb7f 1868
Description: This version of dfsb7 1867 does not require that 𝜑 and 𝑧 be distinct. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-17 1419 i.e. that doesn't have the concept of a variable not occurring in a wff. (df-sb 1646 is also suitable, but its mixing of free and bound variables is distasteful to some logicians.) (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
sb7f.1 (𝜑 → ∀𝑧𝜑)
Assertion
Ref Expression
sb7f ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sb7f
StepHypRef Expression
1 sb5 1767 . . 3 ([𝑧 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑧𝜑))
21sbbii 1648 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧]∃𝑥(𝑥 = 𝑧𝜑))
3 sb7f.1 . . 3 (𝜑 → ∀𝑧𝜑)
43sbco2v 1821 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
5 sb5 1767 . 2 ([𝑦 / 𝑧]∃𝑥(𝑥 = 𝑧𝜑) ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
62, 4, 53bitr3i 199 1 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wal 1241  wex 1381  [wsb 1645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator