![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr3i | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | bitr3i 175 | . 2 ⊢ (𝜒 ↔ 𝜓) |
4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
5 | 3, 4 | bitri 173 | 1 ⊢ (𝜒 ↔ 𝜃) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: an12 495 cbval2 1796 cbvex2 1797 sbco2v 1821 equsb3 1825 sbn 1826 sbim 1827 sbor 1828 sban 1829 sbco2h 1838 sbco2d 1840 sbco2vd 1841 sbcomv 1845 sbco3 1848 sbcom 1849 sbcom2v 1861 sbcom2v2 1862 sbcom2 1863 dfsb7 1867 sb7f 1868 sb7af 1869 sbal 1876 sbex 1880 sbco4lem 1882 moanim 1974 eq2tri 2099 eqsb3 2141 clelsb3 2142 clelsb4 2143 ralcom4 2576 rexcom4 2577 ceqsralt 2581 gencbvex 2600 gencbval 2602 ceqsrexbv 2675 euind 2728 reuind 2744 sbccomlem 2832 sbccom 2833 raaan 3327 elxp2 4363 eqbrriv 4435 dm0rn0 4552 dfres2 4658 qfto 4714 xpm 4745 rninxp 4764 fununi 4967 dfoprab2 5552 dfer2 6107 euen1 6282 xpsnen 6295 xpassen 6304 enq0enq 6529 prnmaxl 6586 prnminu 6587 |
Copyright terms: Public domain | W3C validator |