Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbco2h | GIF version |
Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 19-Mar-2018.) |
Ref | Expression |
---|---|
sbco2h.1 | ⊢ (𝜑 → ∀𝑧𝜑) |
Ref | Expression |
---|---|
sbco2h | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbco2h.1 | . . . . 5 ⊢ (𝜑 → ∀𝑧𝜑) | |
2 | 1 | nfi 1351 | . . . 4 ⊢ Ⅎ𝑧𝜑 |
3 | 2 | sbco2yz 1837 | . . 3 ⊢ ([𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝜑) |
4 | 3 | sbbii 1648 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑤][𝑤 / 𝑥]𝜑) |
5 | nfv 1421 | . . 3 ⊢ Ⅎ𝑤[𝑧 / 𝑥]𝜑 | |
6 | 5 | sbco2yz 1837 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑) |
7 | nfv 1421 | . . 3 ⊢ Ⅎ𝑤𝜑 | |
8 | 7 | sbco2yz 1837 | . 2 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
9 | 4, 6, 8 | 3bitr3i 199 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 ∀wal 1241 [wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 |
This theorem is referenced by: sbco2 1839 sbco2d 1840 sbco3 1848 elsb3 1852 elsb4 1853 sb9 1855 |
Copyright terms: Public domain | W3C validator |