Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsb3 | GIF version |
Description: Substitution applied to an atomic wff (class version of equsb3 1825). (Contributed by Rodolfo Medina, 28-Apr-2010.) |
Ref | Expression |
---|---|
eqsb3 | ⊢ ([𝑥 / 𝑦]𝑦 = 𝐴 ↔ 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsb3lem 2140 | . . 3 ⊢ ([𝑤 / 𝑦]𝑦 = 𝐴 ↔ 𝑤 = 𝐴) | |
2 | 1 | sbbii 1648 | . 2 ⊢ ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝐴 ↔ [𝑥 / 𝑤]𝑤 = 𝐴) |
3 | nfv 1421 | . . 3 ⊢ Ⅎ𝑤 𝑦 = 𝐴 | |
4 | 3 | sbco2 1839 | . 2 ⊢ ([𝑥 / 𝑤][𝑤 / 𝑦]𝑦 = 𝐴 ↔ [𝑥 / 𝑦]𝑦 = 𝐴) |
5 | eqsb3lem 2140 | . 2 ⊢ ([𝑥 / 𝑤]𝑤 = 𝐴 ↔ 𝑥 = 𝐴) | |
6 | 2, 4, 5 | 3bitr3i 199 | 1 ⊢ ([𝑥 / 𝑦]𝑦 = 𝐴 ↔ 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 = wceq 1243 [wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-cleq 2033 |
This theorem is referenced by: pm13.183 2681 eqsbc3 2802 |
Copyright terms: Public domain | W3C validator |