![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > clelsb4 | GIF version |
Description: Substitution applied to an atomic wff (class version of elsb4 1853). (Contributed by Jim Kingdon, 22-Nov-2018.) |
Ref | Expression |
---|---|
clelsb4 | ⊢ ([𝑥 / 𝑦]𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1421 | . . 3 ⊢ Ⅎ𝑦 𝐴 ∈ 𝑤 | |
2 | 1 | sbco2 1839 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝐴 ∈ 𝑤 ↔ [𝑥 / 𝑤]𝐴 ∈ 𝑤) |
3 | nfv 1421 | . . . 4 ⊢ Ⅎ𝑤 𝐴 ∈ 𝑦 | |
4 | eleq2 2101 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑦)) | |
5 | 3, 4 | sbie 1674 | . . 3 ⊢ ([𝑦 / 𝑤]𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑦) |
6 | 5 | sbbii 1648 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝐴 ∈ 𝑤 ↔ [𝑥 / 𝑦]𝐴 ∈ 𝑦) |
7 | nfv 1421 | . . 3 ⊢ Ⅎ𝑤 𝐴 ∈ 𝑥 | |
8 | eleq2 2101 | . . 3 ⊢ (𝑤 = 𝑥 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑥)) | |
9 | 7, 8 | sbie 1674 | . 2 ⊢ ([𝑥 / 𝑤]𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑥) |
10 | 2, 6, 9 | 3bitr3i 199 | 1 ⊢ ([𝑥 / 𝑦]𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 ∈ wcel 1393 [wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-cleq 2033 df-clel 2036 |
This theorem is referenced by: peano1 4317 peano2 4318 |
Copyright terms: Public domain | W3C validator |