ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq2 Structured version   GIF version

Theorem preq2 3439
Description: Equality theorem for unordered pairs. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
preq2 (A = B → {𝐶, A} = {𝐶, B})

Proof of Theorem preq2
StepHypRef Expression
1 preq1 3438 . 2 (A = B → {A, 𝐶} = {B, 𝐶})
2 prcom 3437 . 2 {𝐶, A} = {A, 𝐶}
3 prcom 3437 . 2 {𝐶, B} = {B, 𝐶}
41, 2, 33eqtr4g 2094 1 (A = B → {𝐶, A} = {𝐶, B})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1242  {cpr 3368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916  df-sn 3373  df-pr 3374
This theorem is referenced by:  preq12  3440  preq2i  3442  preq2d  3445  tpeq2  3448  preq12bg  3535  opeq2  3541  uniprg  3586  intprg  3639  prexgOLD  3937  prexg  3938  opth  3965  opeqsn  3980  relop  4429  funopg  4877  bj-prexg  9342
  Copyright terms: Public domain W3C validator