ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1stbg GIF version

Theorem op1stbg 4210
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by Jim Kingdon, 17-Dec-2018.)
Assertion
Ref Expression
op1stbg ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = 𝐴)

Proof of Theorem op1stbg
StepHypRef Expression
1 dfopg 3547 . . . . 5 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
21inteqd 3620 . . . 4 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
3 elex 2566 . . . . . . . 8 (𝐴𝑉𝐴 ∈ V)
4 snexgOLD 3935 . . . . . . . 8 (𝐴 ∈ V → {𝐴} ∈ V)
53, 4syl 14 . . . . . . 7 (𝐴𝑉 → {𝐴} ∈ V)
65adantr 261 . . . . . 6 ((𝐴𝑉𝐵𝑊) → {𝐴} ∈ V)
7 elex 2566 . . . . . . 7 (𝐵𝑊𝐵 ∈ V)
8 prexgOLD 3946 . . . . . . 7 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴, 𝐵} ∈ V)
93, 7, 8syl2an 273 . . . . . 6 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)
10 intprg 3648 . . . . . 6 (({𝐴} ∈ V ∧ {𝐴, 𝐵} ∈ V) → {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}))
116, 9, 10syl2anc 391 . . . . 5 ((𝐴𝑉𝐵𝑊) → {{𝐴}, {𝐴, 𝐵}} = ({𝐴} ∩ {𝐴, 𝐵}))
12 snsspr1 3512 . . . . . 6 {𝐴} ⊆ {𝐴, 𝐵}
13 df-ss 2931 . . . . . 6 ({𝐴} ⊆ {𝐴, 𝐵} ↔ ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴})
1412, 13mpbi 133 . . . . 5 ({𝐴} ∩ {𝐴, 𝐵}) = {𝐴}
1511, 14syl6eq 2088 . . . 4 ((𝐴𝑉𝐵𝑊) → {{𝐴}, {𝐴, 𝐵}} = {𝐴})
162, 15eqtrd 2072 . . 3 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = {𝐴})
1716inteqd 3620 . 2 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = {𝐴})
18 intsng 3649 . . 3 (𝐴𝑉 {𝐴} = 𝐴)
1918adantr 261 . 2 ((𝐴𝑉𝐵𝑊) → {𝐴} = 𝐴)
2017, 19eqtrd 2072 1 ((𝐴𝑉𝐵𝑊) → 𝐴, 𝐵⟩ = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  Vcvv 2557  cin 2916  wss 2917  {csn 3375  {cpr 3376  cop 3378   cint 3615
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-int 3616
This theorem is referenced by:  elxp5  4809  fundmen  6286
  Copyright terms: Public domain W3C validator