![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iseqeq4 | GIF version |
Description: Equality theorem for the sequence builder operation. (Contributed by Jim Kingdon, 30-May-2020.) |
Ref | Expression |
---|---|
iseqeq4 | ⊢ (𝑆 = 𝑇 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀( + , 𝐹, 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2040 | . . . . 5 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
2 | mpt2eq12 5565 | . . . . 5 ⊢ (((ℤ≥‘𝑀) = (ℤ≥‘𝑀) ∧ 𝑆 = 𝑇) → (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)) | |
3 | 1, 2 | mpan 400 | . . . 4 ⊢ (𝑆 = 𝑇 → (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉)) |
4 | freceq1 5979 | . . . 4 ⊢ ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)) | |
5 | 3, 4 | syl 14 | . . 3 ⊢ (𝑆 = 𝑇 → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)) |
6 | 5 | rneqd 4563 | . 2 ⊢ (𝑆 = 𝑇 → ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)) |
7 | df-iseq 9212 | . 2 ⊢ seq𝑀( + , 𝐹, 𝑆) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑆 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
8 | df-iseq 9212 | . 2 ⊢ seq𝑀( + , 𝐹, 𝑇) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
9 | 6, 7, 8 | 3eqtr4g 2097 | 1 ⊢ (𝑆 = 𝑇 → seq𝑀( + , 𝐹, 𝑆) = seq𝑀( + , 𝐹, 𝑇)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 〈cop 3378 ran crn 4346 ‘cfv 4902 (class class class)co 5512 ↦ cmpt2 5514 freccfrec 5977 1c1 6890 + caddc 6892 ℤ≥cuz 8473 seqcseq 9211 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-mpt 3820 df-cnv 4353 df-dm 4355 df-rn 4356 df-res 4357 df-iota 4867 df-fv 4910 df-oprab 5516 df-mpt2 5517 df-recs 5920 df-frec 5978 df-iseq 9212 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |