ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqeq4 Unicode version

Theorem iseqeq4 9217
Description: Equality theorem for the sequence builder operation. (Contributed by Jim Kingdon, 30-May-2020.)
Assertion
Ref Expression
iseqeq4  |-  ( S  =  T  ->  seq M (  .+  ,  F ,  S )  =  seq M (  .+  ,  F ,  T ) )

Proof of Theorem iseqeq4
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2040 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 mpt2eq12 5565 . . . . 5  |-  ( ( ( ZZ>= `  M )  =  ( ZZ>= `  M
)  /\  S  =  T )  ->  (
x  e.  ( ZZ>= `  M ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  =  ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) )
31, 2mpan 400 . . . 4  |-  ( S  =  T  ->  (
x  e.  ( ZZ>= `  M ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  =  ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) )
4 freceq1 5979 . . . 4  |-  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  =  ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
53, 4syl 14 . . 3  |-  ( S  =  T  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
65rneqd 4563 . 2  |-  ( S  =  T  ->  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) )
7 df-iseq 9212 . 2  |-  seq M
(  .+  ,  F ,  S )  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
8 df-iseq 9212 . 2  |-  seq M
(  .+  ,  F ,  T )  =  ran frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  T  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
96, 7, 83eqtr4g 2097 1  |-  ( S  =  T  ->  seq M (  .+  ,  F ,  S )  =  seq M (  .+  ,  F ,  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243   <.cop 3378   ran crn 4346   ` cfv 4902  (class class class)co 5512    |-> cmpt2 5514  freccfrec 5977   1c1 6890    + caddc 6892   ZZ>=cuz 8473    seqcseq 9211
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357  df-iota 4867  df-fv 4910  df-oprab 5516  df-mpt2 5517  df-recs 5920  df-frec 5978  df-iseq 9212
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator