ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inex1g Structured version   GIF version

Theorem inex1g 3884
Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
inex1g (A 𝑉 → (AB) V)

Proof of Theorem inex1g
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 ineq1 3125 . . 3 (x = A → (xB) = (AB))
21eleq1d 2103 . 2 (x = A → ((xB) V ↔ (AB) V))
3 vex 2554 . . 3 x V
43inex1 3882 . 2 (xB) V
52, 4vtoclg 2607 1 (A 𝑉 → (AB) V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1242   wcel 1390  Vcvv 2551  cin 2910
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-in 2918
This theorem is referenced by:  onin  4089  dmresexg  4577  funimaexg  4926  offval  5661  offval3  5703
  Copyright terms: Public domain W3C validator