Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssex | GIF version |
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 3875 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
ssex.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
ssex | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 2931 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | ssex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 2 | inex2 3892 | . . 3 ⊢ (𝐴 ∩ 𝐵) ∈ V |
4 | eleq1 2100 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ V ↔ 𝐴 ∈ V)) | |
5 | 3, 4 | mpbii 136 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → 𝐴 ∈ V) |
6 | 1, 5 | sylbi 114 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ∈ wcel 1393 Vcvv 2557 ∩ cin 2916 ⊆ wss 2917 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-in 2924 df-ss 2931 |
This theorem is referenced by: ssexi 3895 ssexg 3896 inteximm 3903 funimaexglem 4982 tfrexlem 5948 elinp 6572 |
Copyright terms: Public domain | W3C validator |