Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  inex2 Structured version   GIF version

Theorem inex2 3858
 Description: Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.)
Hypothesis
Ref Expression
inex2.1 A V
Assertion
Ref Expression
inex2 (BA) V

Proof of Theorem inex2
StepHypRef Expression
1 incom 3100 . 2 (BA) = (AB)
2 inex2.1 . . 3 A V
32inex1 3857 . 2 (AB) V
41, 3eqeltri 2086 1 (BA) V
 Colors of variables: wff set class Syntax hints:   ∈ wcel 1369  Vcvv 2529   ∩ cin 2887 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 614  ax-5 1312  ax-7 1313  ax-gen 1314  ax-ie1 1358  ax-ie2 1359  ax-8 1371  ax-10 1372  ax-11 1373  ax-i12 1374  ax-bnd 1375  ax-4 1376  ax-17 1395  ax-i9 1399  ax-ial 1403  ax-i5r 1404  ax-ext 1998  ax-sep 3841 This theorem depends on definitions:  df-bi 110  df-tru 1229  df-nf 1326  df-sb 1622  df-clab 2003  df-cleq 2009  df-clel 2012  df-nfc 2143  df-v 2531  df-in 2895 This theorem is referenced by:  ssex  3860  peano5nni  7503
 Copyright terms: Public domain W3C validator