Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmpt3i GIF version

Theorem fvmpt3i 5252
 Description: Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
fvmpt3.a (𝑥 = 𝐴𝐵 = 𝐶)
fvmpt3.b 𝐹 = (𝑥𝐷𝐵)
fvmpt3i.c 𝐵 ∈ V
Assertion
Ref Expression
fvmpt3i (𝐴𝐷 → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpt3i
StepHypRef Expression
1 fvmpt3.a . 2 (𝑥 = 𝐴𝐵 = 𝐶)
2 fvmpt3.b . 2 𝐹 = (𝑥𝐷𝐵)
3 fvmpt3i.c . . 3 𝐵 ∈ V
43a1i 9 . 2 (𝑥𝐷𝐵 ∈ V)
51, 2, 4fvmpt3 5251 1 (𝐴𝐷 → (𝐹𝐴) = 𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1243   ∈ wcel 1393  Vcvv 2557   ↦ cmpt 3818  ‘cfv 4902 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910 This theorem is referenced by:  flval  9116
 Copyright terms: Public domain W3C validator