ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsuc2g Structured version   GIF version

Theorem elsuc2g 4108
Description: Variant of membership in a successor, requiring that B rather than A be a set. (Contributed by NM, 28-Oct-2003.)
Assertion
Ref Expression
elsuc2g (B 𝑉 → (A suc B ↔ (A B A = B)))

Proof of Theorem elsuc2g
StepHypRef Expression
1 df-suc 4074 . . 3 suc B = (B ∪ {B})
21eleq2i 2101 . 2 (A suc BA (B ∪ {B}))
3 elun 3078 . . 3 (A (B ∪ {B}) ↔ (A B A {B}))
4 elsnc2g 3396 . . . 4 (B 𝑉 → (A {B} ↔ A = B))
54orbi2d 703 . . 3 (B 𝑉 → ((A B A {B}) ↔ (A B A = B)))
63, 5syl5bb 181 . 2 (B 𝑉 → (A (B ∪ {B}) ↔ (A B A = B)))
72, 6syl5bb 181 1 (B 𝑉 → (A suc B ↔ (A B A = B)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98   wo 628   = wceq 1242   wcel 1390  cun 2909  {csn 3367  suc csuc 4068
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916  df-sn 3373  df-suc 4074
This theorem is referenced by:  elsuc2  4110  nntri3or  6011  frec2uzltd  8830
  Copyright terms: Public domain W3C validator