ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpimasn Unicode version

Theorem xpimasn 4769
Description: The image of a singleton by a cross product. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Assertion
Ref Expression
xpimasn  |-  ( X  e.  A  ->  (
( A  X.  B
) " { X } )  =  B )

Proof of Theorem xpimasn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 snmg 3486 . . 3  |-  ( X  e.  A  ->  E. x  x  e.  { X } )
2 snssi 3508 . . . . . 6  |-  ( X  e.  A  ->  { X }  C_  A )
3 dfss1 3141 . . . . . 6  |-  ( { X }  C_  A  <->  ( A  i^i  { X } )  =  { X } )
42, 3sylib 127 . . . . 5  |-  ( X  e.  A  ->  ( A  i^i  { X }
)  =  { X } )
54eleq2d 2107 . . . 4  |-  ( X  e.  A  ->  (
x  e.  ( A  i^i  { X }
)  <->  x  e.  { X } ) )
65exbidv 1706 . . 3  |-  ( X  e.  A  ->  ( E. x  x  e.  ( A  i^i  { X } )  <->  E. x  x  e.  { X } ) )
71, 6mpbird 156 . 2  |-  ( X  e.  A  ->  E. x  x  e.  ( A  i^i  { X } ) )
8 xpima2m 4768 . 2  |-  ( E. x  x  e.  ( A  i^i  { X } )  ->  (
( A  X.  B
) " { X } )  =  B )
97, 8syl 14 1  |-  ( X  e.  A  ->  (
( A  X.  B
) " { X } )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243   E.wex 1381    e. wcel 1393    i^i cin 2916    C_ wss 2917   {csn 3375    X. cxp 4343   "cima 4348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator