ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniun Unicode version

Theorem uniun 3599
Description: The class union of the union of two classes. Theorem 8.3 of [Quine] p. 53. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
uniun  |-  U. ( A  u.  B )  =  ( U. A  u.  U. B )

Proof of Theorem uniun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.43 1519 . . . 4  |-  ( E. y ( ( x  e.  y  /\  y  e.  A )  \/  (
x  e.  y  /\  y  e.  B )
)  <->  ( E. y
( x  e.  y  /\  y  e.  A
)  \/  E. y
( x  e.  y  /\  y  e.  B
) ) )
2 elun 3084 . . . . . . 7  |-  ( y  e.  ( A  u.  B )  <->  ( y  e.  A  \/  y  e.  B ) )
32anbi2i 430 . . . . . 6  |-  ( ( x  e.  y  /\  y  e.  ( A  u.  B ) )  <->  ( x  e.  y  /\  (
y  e.  A  \/  y  e.  B )
) )
4 andi 731 . . . . . 6  |-  ( ( x  e.  y  /\  ( y  e.  A  \/  y  e.  B
) )  <->  ( (
x  e.  y  /\  y  e.  A )  \/  ( x  e.  y  /\  y  e.  B
) ) )
53, 4bitri 173 . . . . 5  |-  ( ( x  e.  y  /\  y  e.  ( A  u.  B ) )  <->  ( (
x  e.  y  /\  y  e.  A )  \/  ( x  e.  y  /\  y  e.  B
) ) )
65exbii 1496 . . . 4  |-  ( E. y ( x  e.  y  /\  y  e.  ( A  u.  B
) )  <->  E. y
( ( x  e.  y  /\  y  e.  A )  \/  (
x  e.  y  /\  y  e.  B )
) )
7 eluni 3583 . . . . 5  |-  ( x  e.  U. A  <->  E. y
( x  e.  y  /\  y  e.  A
) )
8 eluni 3583 . . . . 5  |-  ( x  e.  U. B  <->  E. y
( x  e.  y  /\  y  e.  B
) )
97, 8orbi12i 681 . . . 4  |-  ( ( x  e.  U. A  \/  x  e.  U. B
)  <->  ( E. y
( x  e.  y  /\  y  e.  A
)  \/  E. y
( x  e.  y  /\  y  e.  B
) ) )
101, 6, 93bitr4i 201 . . 3  |-  ( E. y ( x  e.  y  /\  y  e.  ( A  u.  B
) )  <->  ( x  e.  U. A  \/  x  e.  U. B ) )
11 eluni 3583 . . 3  |-  ( x  e.  U. ( A  u.  B )  <->  E. y
( x  e.  y  /\  y  e.  ( A  u.  B ) ) )
12 elun 3084 . . 3  |-  ( x  e.  ( U. A  u.  U. B )  <->  ( x  e.  U. A  \/  x  e.  U. B ) )
1310, 11, 123bitr4i 201 . 2  |-  ( x  e.  U. ( A  u.  B )  <->  x  e.  ( U. A  u.  U. B ) )
1413eqriv 2037 1  |-  U. ( A  u.  B )  =  ( U. A  u.  U. B )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    \/ wo 629    = wceq 1243   E.wex 1381    e. wcel 1393    u. cun 2915   U.cuni 3580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-uni 3581
This theorem is referenced by:  unisuc  4150  unisucg  4151
  Copyright terms: Public domain W3C validator