Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniun | Unicode version |
Description: The class union of the union of two classes. Theorem 8.3 of [Quine] p. 53. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
uniun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.43 1519 | . . . 4 | |
2 | elun 3084 | . . . . . . 7 | |
3 | 2 | anbi2i 430 | . . . . . 6 |
4 | andi 731 | . . . . . 6 | |
5 | 3, 4 | bitri 173 | . . . . 5 |
6 | 5 | exbii 1496 | . . . 4 |
7 | eluni 3583 | . . . . 5 | |
8 | eluni 3583 | . . . . 5 | |
9 | 7, 8 | orbi12i 681 | . . . 4 |
10 | 1, 6, 9 | 3bitr4i 201 | . . 3 |
11 | eluni 3583 | . . 3 | |
12 | elun 3084 | . . 3 | |
13 | 10, 11, 12 | 3bitr4i 201 | . 2 |
14 | 13 | eqriv 2037 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 97 wo 629 wceq 1243 wex 1381 wcel 1393 cun 2915 cuni 3580 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-uni 3581 |
This theorem is referenced by: unisuc 4150 unisucg 4151 |
Copyright terms: Public domain | W3C validator |