Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem3-2d Unicode version

Theorem tfrlem3-2d 5928
 Description: Lemma for transfinite recursion which changes a bound variable (Contributed by Jim Kingdon, 2-Jul-2019.)
Hypothesis
Ref Expression
tfrlem3-2d.1
Assertion
Ref Expression
tfrlem3-2d
Distinct variable group:   ,,
Allowed substitution hints:   (,)

Proof of Theorem tfrlem3-2d
StepHypRef Expression
1 tfrlem3-2d.1 . . 3
2 fveq2 5178 . . . . . 6
32eleq1d 2106 . . . . 5
43anbi2d 437 . . . 4
54cbvalv 1794 . . 3
61, 5sylib 127 . 2
7619.21bi 1450 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97  wal 1241   wcel 1393  cvv 2557   wfun 4896  cfv 4902 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910 This theorem is referenced by:  tfrlemisucfn  5938  tfrlemisucaccv  5939  tfrlemibxssdm  5941  tfrlemibfn  5942  tfrlemi14d  5947
 Copyright terms: Public domain W3C validator