ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexv Unicode version

Theorem rexv 2572
Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
rexv  |-  ( E. x  e.  _V  ph  <->  E. x ph )

Proof of Theorem rexv
StepHypRef Expression
1 df-rex 2312 . 2  |-  ( E. x  e.  _V  ph  <->  E. x ( x  e. 
_V  /\  ph ) )
2 vex 2560 . . . 4  |-  x  e. 
_V
32biantrur 287 . . 3  |-  ( ph  <->  ( x  e.  _V  /\  ph ) )
43exbii 1496 . 2  |-  ( E. x ph  <->  E. x
( x  e.  _V  /\ 
ph ) )
51, 4bitr4i 176 1  |-  ( E. x  e.  _V  ph  <->  E. x ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98   E.wex 1381    e. wcel 1393   E.wrex 2307   _Vcvv 2557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-rex 2312  df-v 2559
This theorem is referenced by:  rexcom4  2577  spesbc  2843  dfco2  4820  dfco2a  4821
  Copyright terms: Public domain W3C validator