Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexv | Unicode version |
Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
Ref | Expression |
---|---|
rexv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2312 | . 2 | |
2 | vex 2560 | . . . 4 | |
3 | 2 | biantrur 287 | . . 3 |
4 | 3 | exbii 1496 | . 2 |
5 | 1, 4 | bitr4i 176 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 97 wb 98 wex 1381 wcel 1393 wrex 2307 cvv 2557 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-rex 2312 df-v 2559 |
This theorem is referenced by: rexcom4 2577 spesbc 2843 dfco2 4820 dfco2a 4821 |
Copyright terms: Public domain | W3C validator |