ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuv Unicode version

Theorem reuv 2567
Description: A uniqueness quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.)
Assertion
Ref Expression
reuv  _V

Proof of Theorem reuv
StepHypRef Expression
1 df-reu 2307 . 2  _V 
_V
2 vex 2554 . . . 4 
_V
32biantrur 287 . . 3  _V
43eubii 1906 . 2  _V
51, 4bitr4i 176 1  _V
Colors of variables: wff set class
Syntax hints:   wa 97   wb 98   wcel 1390  weu 1897  wreu 2302   _Vcvv 2551
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-clab 2024  df-cleq 2030  df-clel 2033  df-reu 2307  df-v 2553
This theorem is referenced by:  euen1  6218
  Copyright terms: Public domain W3C validator