ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resoprab2 Unicode version

Theorem resoprab2 5598
Description: Restriction of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
resoprab2  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }  |`  ( C  X.  D ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ph ) } )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    x, D, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem resoprab2
StepHypRef Expression
1 resoprab 5597 . 2  |-  ( {
<. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  |`  ( C  X.  D ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) }
2 anass 381 . . . 4  |-  ( ( ( ( x  e.  C  /\  y  e.  D )  /\  (
x  e.  A  /\  y  e.  B )
)  /\  ph )  <->  ( (
x  e.  C  /\  y  e.  D )  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
3 an4 520 . . . . . 6  |-  ( ( ( x  e.  C  /\  y  e.  D
)  /\  ( x  e.  A  /\  y  e.  B ) )  <->  ( (
x  e.  C  /\  x  e.  A )  /\  ( y  e.  D  /\  y  e.  B
) ) )
4 ssel 2939 . . . . . . . . 9  |-  ( C 
C_  A  ->  (
x  e.  C  ->  x  e.  A )
)
54pm4.71d 373 . . . . . . . 8  |-  ( C 
C_  A  ->  (
x  e.  C  <->  ( x  e.  C  /\  x  e.  A ) ) )
65bicomd 129 . . . . . . 7  |-  ( C 
C_  A  ->  (
( x  e.  C  /\  x  e.  A
)  <->  x  e.  C
) )
7 ssel 2939 . . . . . . . . 9  |-  ( D 
C_  B  ->  (
y  e.  D  -> 
y  e.  B ) )
87pm4.71d 373 . . . . . . . 8  |-  ( D 
C_  B  ->  (
y  e.  D  <->  ( y  e.  D  /\  y  e.  B ) ) )
98bicomd 129 . . . . . . 7  |-  ( D 
C_  B  ->  (
( y  e.  D  /\  y  e.  B
)  <->  y  e.  D
) )
106, 9bi2anan9 538 . . . . . 6  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( ( x  e.  C  /\  x  e.  A )  /\  (
y  e.  D  /\  y  e.  B )
)  <->  ( x  e.  C  /\  y  e.  D ) ) )
113, 10syl5bb 181 . . . . 5  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( ( x  e.  C  /\  y  e.  D )  /\  (
x  e.  A  /\  y  e.  B )
)  <->  ( x  e.  C  /\  y  e.  D ) ) )
1211anbi1d 438 . . . 4  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( ( ( x  e.  C  /\  y  e.  D )  /\  ( x  e.  A  /\  y  e.  B
) )  /\  ph ) 
<->  ( ( x  e.  C  /\  y  e.  D )  /\  ph ) ) )
132, 12syl5bbr 183 . . 3  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( ( x  e.  C  /\  y  e.  D )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  ph ) )  <-> 
( ( x  e.  C  /\  y  e.  D )  /\  ph ) ) )
1413oprabbidv 5559 . 2  |-  ( ( C  C_  A  /\  D  C_  B )  ->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  C  /\  y  e.  D )  /\  (
( x  e.  A  /\  y  e.  B
)  /\  ph ) ) }  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } )
151, 14syl5eq 2084 1  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }  |`  ( C  X.  D ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ph ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393    C_ wss 2917    X. cxp 4343    |` cres 4347   {coprab 5513
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-opab 3819  df-xp 4351  df-rel 4352  df-res 4357  df-oprab 5516
This theorem is referenced by:  resmpt2  5599
  Copyright terms: Public domain W3C validator