ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opth2 Unicode version

Theorem opth2 3968
Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014.)
Hypotheses
Ref Expression
opth2.1  C 
_V
opth2.2  D 
_V
Assertion
Ref Expression
opth2  <. ,  >.  <. C ,  D >.  C  D

Proof of Theorem opth2
StepHypRef Expression
1 opth2.1 . 2  C 
_V
2 opth2.2 . 2  D 
_V
3 opthg2 3967 . 2  C  _V  D  _V  <. ,  >.  <. C ,  D >.  C  D
41, 2, 3mp2an 402 1  <. ,  >.  <. C ,  D >.  C  D
Colors of variables: wff set class
Syntax hints:   wa 97   wb 98   wceq 1242   wcel 1390   _Vcvv 2551   <.cop 3370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376
This theorem is referenced by:  eqvinop  3971  opelxp  4317  fsn  5278  dfplpq2  6338  ltresr  6736  frecuzrdgfn  8879
  Copyright terms: Public domain W3C validator