ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeud Unicode version

Theorem nfeud 1916
Description: Deduction version of nfeu 1919. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 25-May-2018.)
Hypotheses
Ref Expression
nfeud.1  |-  F/ y
ph
nfeud.2  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfeud  |-  ( ph  ->  F/ x E! y ps )

Proof of Theorem nfeud
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1421 . . 3  |-  F/ z ps
21sb8eu 1913 . 2  |-  ( E! y ps  <->  E! z [ z  /  y ] ps )
3 nfv 1421 . . 3  |-  F/ z
ph
4 nfeud.1 . . . 4  |-  F/ y
ph
5 nfeud.2 . . . 4  |-  ( ph  ->  F/ x ps )
64, 5nfsbd 1851 . . 3  |-  ( ph  ->  F/ x [ z  /  y ] ps )
73, 6nfeudv 1915 . 2  |-  ( ph  ->  F/ x E! z [ z  /  y ] ps )
82, 7nfxfrd 1364 1  |-  ( ph  ->  F/ x E! y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1349   [wsb 1645   E!weu 1900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903
This theorem is referenced by:  nfmod  1917  hbeud  1922  nfreudxy  2483
  Copyright terms: Public domain W3C validator