ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeud Structured version   Unicode version

Theorem nfeud 1913
Description: Deduction version of nfeu 1916. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 25-May-2018.)
Hypotheses
Ref Expression
nfeud.1  F/
nfeud.2  F/
Assertion
Ref Expression
nfeud  F/

Proof of Theorem nfeud
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfv 1418 . . 3  F/
21sb8eu 1910 . 2
3 nfv 1418 . . 3  F/
4 nfeud.1 . . . 4  F/
5 nfeud.2 . . . 4  F/
64, 5nfsbd 1848 . . 3  F/
73, 6nfeudv 1912 . 2  F/
82, 7nfxfrd 1361 1  F/
Colors of variables: wff set class
Syntax hints:   wi 4   F/wnf 1346  wsb 1642  weu 1897
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900
This theorem is referenced by:  nfmod  1914  hbeud  1919  nfreudxy  2477
  Copyright terms: Public domain W3C validator