Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbeud | Unicode version |
Description: Deduction version of hbeu 1921. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 25-May-2018.) |
Ref | Expression |
---|---|
hbeud.1 | |
hbeud.2 | |
hbeud.3 |
Ref | Expression |
---|---|
hbeud |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbeud.2 | . . . 4 | |
2 | 1 | nfi 1351 | . . 3 |
3 | hbeud.1 | . . . . 5 | |
4 | 3 | nfi 1351 | . . . 4 |
5 | hbeud.3 | . . . 4 | |
6 | 4, 5 | nfd 1416 | . . 3 |
7 | 2, 6 | nfeud 1916 | . 2 |
8 | 7 | nfrd 1413 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1241 weu 1900 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |