ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbeud Unicode version

Theorem hbeud 1919
Description: Deduction version of hbeu 1918. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 25-May-2018.)
Hypotheses
Ref Expression
hbeud.1
hbeud.2
hbeud.3
Assertion
Ref Expression
hbeud

Proof of Theorem hbeud
StepHypRef Expression
1 hbeud.2 . . . 4
21nfi 1348 . . 3  F/
3 hbeud.1 . . . . 5
43nfi 1348 . . . 4  F/
5 hbeud.3 . . . 4
64, 5nfd 1413 . . 3  F/
72, 6nfeud 1913 . 2  F/
87nfrd 1410 1
Colors of variables: wff set class
Syntax hints:   wi 4  wal 1240  weu 1897
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator