ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmod Unicode version

Theorem nfmod 1917
Description: Bound-variable hypothesis builder for "at most one." (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
nfeud.1  |-  F/ y
ph
nfeud.2  |-  ( ph  ->  F/ x ps )
Assertion
Ref Expression
nfmod  |-  ( ph  ->  F/ x E* y ps )

Proof of Theorem nfmod
StepHypRef Expression
1 df-mo 1904 . 2  |-  ( E* y ps  <->  ( E. y ps  ->  E! y ps ) )
2 nfeud.1 . . . 4  |-  F/ y
ph
3 nfeud.2 . . . 4  |-  ( ph  ->  F/ x ps )
42, 3nfexd 1644 . . 3  |-  ( ph  ->  F/ x E. y ps )
52, 3nfeud 1916 . . 3  |-  ( ph  ->  F/ x E! y ps )
64, 5nfimd 1477 . 2  |-  ( ph  ->  F/ x ( E. y ps  ->  E! y ps ) )
71, 6nfxfrd 1364 1  |-  ( ph  ->  F/ x E* y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1349   E.wex 1381   E!weu 1900   E*wmo 1901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904
This theorem is referenced by:  nfmo  1920
  Copyright terms: Public domain W3C validator