Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfeudv Unicode version

Theorem nfeudv 1915
 Description: Deduction version of nfeu 1919. Similar to nfeud 1916 but has the additional constraint that and must be distinct. (Contributed by Jim Kingdon, 25-May-2018.)
Hypotheses
Ref Expression
nfeudv.1
nfeudv.2
Assertion
Ref Expression
nfeudv
Distinct variable group:   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem nfeudv
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfv 1421 . . 3
2 nfeudv.1 . . . 4
3 nfeudv.2 . . . . 5
4 nfv 1421 . . . . . 6
54a1i 9 . . . . 5
63, 5nfbid 1480 . . . 4
72, 6nfald 1643 . . 3
81, 7nfexd 1644 . 2
9 df-eu 1903 . . 3
109nfbii 1362 . 2
118, 10sylibr 137 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98  wal 1241   wceq 1243  wnf 1349  wex 1381  weu 1900 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427  ax-i5r 1428 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-eu 1903 This theorem is referenced by:  nfeud  1916
 Copyright terms: Public domain W3C validator