Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfeud | GIF version |
Description: Deduction version of nfeu 1919. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 25-May-2018.) |
Ref | Expression |
---|---|
nfeud.1 | ⊢ Ⅎ𝑦𝜑 |
nfeud.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfeud | ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1421 | . . 3 ⊢ Ⅎ𝑧𝜓 | |
2 | 1 | sb8eu 1913 | . 2 ⊢ (∃!𝑦𝜓 ↔ ∃!𝑧[𝑧 / 𝑦]𝜓) |
3 | nfv 1421 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
4 | nfeud.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
5 | nfeud.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
6 | 4, 5 | nfsbd 1851 | . . 3 ⊢ (𝜑 → Ⅎ𝑥[𝑧 / 𝑦]𝜓) |
7 | 3, 6 | nfeudv 1915 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃!𝑧[𝑧 / 𝑦]𝜓) |
8 | 2, 7 | nfxfrd 1364 | 1 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1349 [wsb 1645 ∃!weu 1900 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 |
This theorem is referenced by: nfmod 1917 hbeud 1922 nfreudxy 2483 |
Copyright terms: Public domain | W3C validator |