Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsb4 Unicode version

Theorem hbsb4 1888
 Description: A variable not free remains so after substitution with a distinct variable. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
Hypothesis
Ref Expression
hbsb4.1
Assertion
Ref Expression
hbsb4

Proof of Theorem hbsb4
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 hbsb4.1 . . 3
21hbsb 1823 . 2
3 sbequ 1721 . 2
42, 3dvelimALT 1886 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wal 1241  wsb 1645 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646 This theorem is referenced by:  hbsb4t  1889  dvelimf  1891
 Copyright terms: Public domain W3C validator