ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsb4t Unicode version

Theorem hbsb4t 1889
Description: A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 1888). (Contributed by NM, 7-Apr-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
hbsb4t  |-  ( A. x A. z ( ph  ->  A. z ph )  ->  ( -.  A. z 
z  =  y  -> 
( [ y  /  x ] ph  ->  A. z [ y  /  x ] ph ) ) )

Proof of Theorem hbsb4t
StepHypRef Expression
1 hba1 1433 . . 3  |-  ( A. z ph  ->  A. z A. z ph )
21hbsb4 1888 . 2  |-  ( -. 
A. z  z  =  y  ->  ( [
y  /  x ] A. z ph  ->  A. z [ y  /  x ] A. z ph )
)
3 spsbim 1724 . . . . 5  |-  ( A. x ( ph  ->  A. z ph )  -> 
( [ y  /  x ] ph  ->  [ y  /  x ] A. z ph ) )
43sps 1430 . . . 4  |-  ( A. z A. x ( ph  ->  A. z ph )  ->  ( [ y  /  x ] ph  ->  [ y  /  x ] A. z ph ) )
5 ax-4 1400 . . . . . . 7  |-  ( A. z ph  ->  ph )
65sbimi 1647 . . . . . 6  |-  ( [ y  /  x ] A. z ph  ->  [ y  /  x ] ph )
76alimi 1344 . . . . 5  |-  ( A. z [ y  /  x ] A. z ph  ->  A. z [ y  /  x ] ph )
87a1i 9 . . . 4  |-  ( A. z A. x ( ph  ->  A. z ph )  ->  ( A. z [ y  /  x ] A. z ph  ->  A. z [ y  /  x ] ph ) )
94, 8imim12d 68 . . 3  |-  ( A. z A. x ( ph  ->  A. z ph )  ->  ( ( [ y  /  x ] A. z ph  ->  A. z [ y  /  x ] A. z ph )  ->  ( [ y  /  x ] ph  ->  A. z [ y  /  x ] ph ) ) )
109a7s 1343 . 2  |-  ( A. x A. z ( ph  ->  A. z ph )  ->  ( ( [ y  /  x ] A. z ph  ->  A. z [ y  /  x ] A. z ph )  ->  ( [ y  /  x ] ph  ->  A. z [ y  /  x ] ph ) ) )
112, 10syl5 28 1  |-  ( A. x A. z ( ph  ->  A. z ph )  ->  ( -.  A. z 
z  =  y  -> 
( [ y  /  x ] ph  ->  A. z [ y  /  x ] ph ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1241   [wsb 1645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646
This theorem is referenced by:  nfsb4t  1890
  Copyright terms: Public domain W3C validator