ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freccl Unicode version

Theorem freccl 5993
Description: Closure for finite recursion. (Contributed by Jim Kingdon, 25-May-2020.)
Hypotheses
Ref Expression
freccl.ex  |-  ( ph  ->  A. z ( F `
 z )  e. 
_V )
freccl.a  |-  ( ph  ->  A  e.  S )
freccl.cl  |-  ( (
ph  /\  z  e.  S )  ->  ( F `  z )  e.  S )
freccl.b  |-  ( ph  ->  B  e.  om )
Assertion
Ref Expression
freccl  |-  ( ph  ->  (frec ( F ,  A ) `  B
)  e.  S )
Distinct variable groups:    z, A    z, F    z, S    ph, z
Allowed substitution hint:    B( z)

Proof of Theorem freccl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 freccl.b . 2  |-  ( ph  ->  B  e.  om )
2 fveq2 5178 . . . . 5  |-  ( x  =  B  ->  (frec ( F ,  A ) `
 x )  =  (frec ( F ,  A ) `  B
) )
32eleq1d 2106 . . . 4  |-  ( x  =  B  ->  (
(frec ( F ,  A ) `  x
)  e.  S  <->  (frec ( F ,  A ) `  B )  e.  S
) )
43imbi2d 219 . . 3  |-  ( x  =  B  ->  (
( ph  ->  (frec ( F ,  A ) `
 x )  e.  S )  <->  ( ph  ->  (frec ( F ,  A ) `  B
)  e.  S ) ) )
5 fveq2 5178 . . . . 5  |-  ( x  =  (/)  ->  (frec ( F ,  A ) `
 x )  =  (frec ( F ,  A ) `  (/) ) )
65eleq1d 2106 . . . 4  |-  ( x  =  (/)  ->  ( (frec ( F ,  A
) `  x )  e.  S  <->  (frec ( F ,  A ) `  (/) )  e.  S ) )
7 fveq2 5178 . . . . 5  |-  ( x  =  y  ->  (frec ( F ,  A ) `
 x )  =  (frec ( F ,  A ) `  y
) )
87eleq1d 2106 . . . 4  |-  ( x  =  y  ->  (
(frec ( F ,  A ) `  x
)  e.  S  <->  (frec ( F ,  A ) `  y )  e.  S
) )
9 fveq2 5178 . . . . 5  |-  ( x  =  suc  y  -> 
(frec ( F ,  A ) `  x
)  =  (frec ( F ,  A ) `
 suc  y )
)
109eleq1d 2106 . . . 4  |-  ( x  =  suc  y  -> 
( (frec ( F ,  A ) `  x )  e.  S  <->  (frec ( F ,  A
) `  suc  y )  e.  S ) )
11 freccl.a . . . . . 6  |-  ( ph  ->  A  e.  S )
12 frec0g 5983 . . . . . 6  |-  ( A  e.  S  ->  (frec ( F ,  A ) `
 (/) )  =  A )
1311, 12syl 14 . . . . 5  |-  ( ph  ->  (frec ( F ,  A ) `  (/) )  =  A )
1413, 11eqeltrd 2114 . . . 4  |-  ( ph  ->  (frec ( F ,  A ) `  (/) )  e.  S )
15 freccl.ex . . . . . . . . . 10  |-  ( ph  ->  A. z ( F `
 z )  e. 
_V )
16 frecfnom 5986 . . . . . . . . . 10  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  S )  -> frec ( F ,  A )  Fn 
om )
1715, 11, 16syl2anc 391 . . . . . . . . 9  |-  ( ph  -> frec ( F ,  A
)  Fn  om )
18 funfvex 5192 . . . . . . . . . 10  |-  ( ( Fun frec ( F ,  A )  /\  y  e.  dom frec ( F ,  A ) )  -> 
(frec ( F ,  A ) `  y
)  e.  _V )
1918funfni 4999 . . . . . . . . 9  |-  ( (frec ( F ,  A
)  Fn  om  /\  y  e.  om )  ->  (frec ( F ,  A ) `  y
)  e.  _V )
2017, 19sylan 267 . . . . . . . 8  |-  ( (
ph  /\  y  e.  om )  ->  (frec ( F ,  A ) `  y )  e.  _V )
21 isset 2561 . . . . . . . 8  |-  ( (frec ( F ,  A
) `  y )  e.  _V  <->  E. z  z  =  (frec ( F ,  A ) `  y
) )
2220, 21sylib 127 . . . . . . 7  |-  ( (
ph  /\  y  e.  om )  ->  E. z 
z  =  (frec ( F ,  A ) `
 y ) )
23 freccl.cl . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  S )  ->  ( F `  z )  e.  S )
2423ex 108 . . . . . . . . . . . 12  |-  ( ph  ->  ( z  e.  S  ->  ( F `  z
)  e.  S ) )
2524adantr 261 . . . . . . . . . . 11  |-  ( (
ph  /\  z  =  (frec ( F ,  A
) `  y )
)  ->  ( z  e.  S  ->  ( F `
 z )  e.  S ) )
26 eleq1 2100 . . . . . . . . . . . 12  |-  ( z  =  (frec ( F ,  A ) `  y )  ->  (
z  e.  S  <->  (frec ( F ,  A ) `  y )  e.  S
) )
2726adantl 262 . . . . . . . . . . 11  |-  ( (
ph  /\  z  =  (frec ( F ,  A
) `  y )
)  ->  ( z  e.  S  <->  (frec ( F ,  A ) `  y
)  e.  S ) )
28 fveq2 5178 . . . . . . . . . . . . 13  |-  ( z  =  (frec ( F ,  A ) `  y )  ->  ( F `  z )  =  ( F `  (frec ( F ,  A
) `  y )
) )
2928eleq1d 2106 . . . . . . . . . . . 12  |-  ( z  =  (frec ( F ,  A ) `  y )  ->  (
( F `  z
)  e.  S  <->  ( F `  (frec ( F ,  A ) `  y
) )  e.  S
) )
3029adantl 262 . . . . . . . . . . 11  |-  ( (
ph  /\  z  =  (frec ( F ,  A
) `  y )
)  ->  ( ( F `  z )  e.  S  <->  ( F `  (frec ( F ,  A
) `  y )
)  e.  S ) )
3125, 27, 303imtr3d 191 . . . . . . . . . 10  |-  ( (
ph  /\  z  =  (frec ( F ,  A
) `  y )
)  ->  ( (frec ( F ,  A ) `
 y )  e.  S  ->  ( F `  (frec ( F ,  A ) `  y
) )  e.  S
) )
3231ex 108 . . . . . . . . 9  |-  ( ph  ->  ( z  =  (frec ( F ,  A
) `  y )  ->  ( (frec ( F ,  A ) `  y )  e.  S  ->  ( F `  (frec ( F ,  A ) `
 y ) )  e.  S ) ) )
3332exlimdv 1700 . . . . . . . 8  |-  ( ph  ->  ( E. z  z  =  (frec ( F ,  A ) `  y )  ->  (
(frec ( F ,  A ) `  y
)  e.  S  -> 
( F `  (frec ( F ,  A ) `
 y ) )  e.  S ) ) )
3433adantr 261 . . . . . . 7  |-  ( (
ph  /\  y  e.  om )  ->  ( E. z  z  =  (frec ( F ,  A ) `
 y )  -> 
( (frec ( F ,  A ) `  y )  e.  S  ->  ( F `  (frec ( F ,  A ) `
 y ) )  e.  S ) ) )
3522, 34mpd 13 . . . . . 6  |-  ( (
ph  /\  y  e.  om )  ->  ( (frec ( F ,  A ) `
 y )  e.  S  ->  ( F `  (frec ( F ,  A ) `  y
) )  e.  S
) )
3615adantr 261 . . . . . . . 8  |-  ( (
ph  /\  y  e.  om )  ->  A. z
( F `  z
)  e.  _V )
3711adantr 261 . . . . . . . 8  |-  ( (
ph  /\  y  e.  om )  ->  A  e.  S )
38 simpr 103 . . . . . . . 8  |-  ( (
ph  /\  y  e.  om )  ->  y  e.  om )
39 frecsuc 5991 . . . . . . . 8  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  S  /\  y  e.  om )  ->  (frec ( F ,  A ) `  suc  y )  =  ( F `  (frec ( F ,  A ) `
 y ) ) )
4036, 37, 38, 39syl3anc 1135 . . . . . . 7  |-  ( (
ph  /\  y  e.  om )  ->  (frec ( F ,  A ) `  suc  y )  =  ( F `  (frec ( F ,  A ) `
 y ) ) )
4140eleq1d 2106 . . . . . 6  |-  ( (
ph  /\  y  e.  om )  ->  ( (frec ( F ,  A ) `
 suc  y )  e.  S  <->  ( F `  (frec ( F ,  A
) `  y )
)  e.  S ) )
4235, 41sylibrd 158 . . . . 5  |-  ( (
ph  /\  y  e.  om )  ->  ( (frec ( F ,  A ) `
 y )  e.  S  ->  (frec ( F ,  A ) `  suc  y )  e.  S ) )
4342expcom 109 . . . 4  |-  ( y  e.  om  ->  ( ph  ->  ( (frec ( F ,  A ) `
 y )  e.  S  ->  (frec ( F ,  A ) `  suc  y )  e.  S ) ) )
446, 8, 10, 14, 43finds2 4324 . . 3  |-  ( x  e.  om  ->  ( ph  ->  (frec ( F ,  A ) `  x )  e.  S
) )
454, 44vtoclga 2619 . 2  |-  ( B  e.  om  ->  ( ph  ->  (frec ( F ,  A ) `  B )  e.  S
) )
461, 45mpcom 32 1  |-  ( ph  ->  (frec ( F ,  A ) `  B
)  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   A.wal 1241    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2557   (/)c0 3224   suc csuc 4102   omcom 4313    Fn wfn 4897   ` cfv 4902  freccfrec 5977
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-recs 5920  df-frec 5978
This theorem is referenced by:  frecuzrdgrrn  9194
  Copyright terms: Public domain W3C validator