ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fconstfvm Unicode version

Theorem fconstfvm 5379
Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 5378. (Contributed by Jim Kingdon, 8-Jan-2019.)
Assertion
Ref Expression
fconstfvm  |-  ( E. y  y  e.  A  ->  ( F : A --> { B }  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B ) ) )
Distinct variable groups:    x, A    x, B    x, F    y, A
Allowed substitution hints:    B( y)    F( y)

Proof of Theorem fconstfvm
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 5046 . . 3  |-  ( F : A --> { B }  ->  F  Fn  A
)
2 fvconst 5351 . . . 4  |-  ( ( F : A --> { B }  /\  x  e.  A
)  ->  ( F `  x )  =  B )
32ralrimiva 2392 . . 3  |-  ( F : A --> { B }  ->  A. x  e.  A  ( F `  x )  =  B )
41, 3jca 290 . 2  |-  ( F : A --> { B }  ->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B ) )
5 fvelrnb 5221 . . . . . . . . 9  |-  ( F  Fn  A  ->  (
w  e.  ran  F  <->  E. z  e.  A  ( F `  z )  =  w ) )
6 fveq2 5178 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
76eqeq1d 2048 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( F `  x
)  =  B  <->  ( F `  z )  =  B ) )
87rspccva 2655 . . . . . . . . . . . 12  |-  ( ( A. x  e.  A  ( F `  x )  =  B  /\  z  e.  A )  ->  ( F `  z )  =  B )
98eqeq1d 2048 . . . . . . . . . . 11  |-  ( ( A. x  e.  A  ( F `  x )  =  B  /\  z  e.  A )  ->  (
( F `  z
)  =  w  <->  B  =  w ) )
109rexbidva 2323 . . . . . . . . . 10  |-  ( A. x  e.  A  ( F `  x )  =  B  ->  ( E. z  e.  A  ( F `  z )  =  w  <->  E. z  e.  A  B  =  w ) )
11 r19.9rmv 3313 . . . . . . . . . . 11  |-  ( E. y  y  e.  A  ->  ( B  =  w  <->  E. z  e.  A  B  =  w )
)
1211bicomd 129 . . . . . . . . . 10  |-  ( E. y  y  e.  A  ->  ( E. z  e.  A  B  =  w  <-> 
B  =  w ) )
1310, 12sylan9bbr 436 . . . . . . . . 9  |-  ( ( E. y  y  e.  A  /\  A. x  e.  A  ( F `  x )  =  B )  ->  ( E. z  e.  A  ( F `  z )  =  w  <->  B  =  w
) )
145, 13sylan9bbr 436 . . . . . . . 8  |-  ( ( ( E. y  y  e.  A  /\  A. x  e.  A  ( F `  x )  =  B )  /\  F  Fn  A )  ->  (
w  e.  ran  F  <->  B  =  w ) )
15 velsn 3392 . . . . . . . . 9  |-  ( w  e.  { B }  <->  w  =  B )
16 eqcom 2042 . . . . . . . . 9  |-  ( w  =  B  <->  B  =  w )
1715, 16bitr2i 174 . . . . . . . 8  |-  ( B  =  w  <->  w  e.  { B } )
1814, 17syl6bb 185 . . . . . . 7  |-  ( ( ( E. y  y  e.  A  /\  A. x  e.  A  ( F `  x )  =  B )  /\  F  Fn  A )  ->  (
w  e.  ran  F  <->  w  e.  { B }
) )
1918eqrdv 2038 . . . . . 6  |-  ( ( ( E. y  y  e.  A  /\  A. x  e.  A  ( F `  x )  =  B )  /\  F  Fn  A )  ->  ran  F  =  { B }
)
2019an32s 502 . . . . 5  |-  ( ( ( E. y  y  e.  A  /\  F  Fn  A )  /\  A. x  e.  A  ( F `  x )  =  B )  ->  ran  F  =  { B }
)
2120exp31 346 . . . 4  |-  ( E. y  y  e.  A  ->  ( F  Fn  A  ->  ( A. x  e.  A  ( F `  x )  =  B  ->  ran  F  =  { B } ) ) )
2221imdistand 421 . . 3  |-  ( E. y  y  e.  A  ->  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B )  ->  ( F  Fn  A  /\  ran  F  =  { B } ) ) )
23 df-fo 4908 . . . 4  |-  ( F : A -onto-> { B } 
<->  ( F  Fn  A  /\  ran  F  =  { B } ) )
24 fof 5106 . . . 4  |-  ( F : A -onto-> { B }  ->  F : A --> { B } )
2523, 24sylbir 125 . . 3  |-  ( ( F  Fn  A  /\  ran  F  =  { B } )  ->  F : A --> { B }
)
2622, 25syl6 29 . 2  |-  ( E. y  y  e.  A  ->  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B )  ->  F : A
--> { B } ) )
274, 26impbid2 131 1  |-  ( E. y  y  e.  A  ->  ( F : A --> { B }  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   A.wral 2306   E.wrex 2307   {csn 3375   ran crn 4346    Fn wfn 4897   -->wf 4898   -onto->wfo 4900   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fo 4908  df-fv 4910
This theorem is referenced by:  fconst3m  5380
  Copyright terms: Public domain W3C validator