ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.9rmv Unicode version

Theorem r19.9rmv 3313
Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 5-Aug-2018.)
Assertion
Ref Expression
r19.9rmv  |-  ( E. y  y  e.  A  ->  ( ph  <->  E. x  e.  A  ph ) )
Distinct variable groups:    x, A    y, A    ph, x
Allowed substitution hint:    ph( y)

Proof of Theorem r19.9rmv
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eleq1 2100 . . 3  |-  ( a  =  y  ->  (
a  e.  A  <->  y  e.  A ) )
21cbvexv 1795 . 2  |-  ( E. a  a  e.  A  <->  E. y  y  e.  A
)
3 eleq1 2100 . . . 4  |-  ( a  =  x  ->  (
a  e.  A  <->  x  e.  A ) )
43cbvexv 1795 . . 3  |-  ( E. a  a  e.  A  <->  E. x  x  e.  A
)
5 df-rex 2312 . . . . 5  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
6 19.41v 1782 . . . . 5  |-  ( E. x ( x  e.  A  /\  ph )  <->  ( E. x  x  e.  A  /\  ph )
)
75, 6bitri 173 . . . 4  |-  ( E. x  e.  A  ph  <->  ( E. x  x  e.  A  /\  ph )
)
87baibr 829 . . 3  |-  ( E. x  x  e.  A  ->  ( ph  <->  E. x  e.  A  ph ) )
94, 8sylbi 114 . 2  |-  ( E. a  a  e.  A  ->  ( ph  <->  E. x  e.  A  ph ) )
102, 9sylbir 125 1  |-  ( E. y  y  e.  A  ->  ( ph  <->  E. x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   E.wex 1381    e. wcel 1393   E.wrex 2307
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-cleq 2033  df-clel 2036  df-rex 2312
This theorem is referenced by:  r19.45mv  3315  iunconstm  3665  fconstfvm  5379  ltexprlemloc  6705
  Copyright terms: Public domain W3C validator