Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspccva Unicode version

Theorem rspccva 2655
 Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
rspcv.1
Assertion
Ref Expression
rspccva
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem rspccva
StepHypRef Expression
1 rspcv.1 . . 3
21rspcv 2652 . 2
32impcom 116 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98   wceq 1243   wcel 1393  wral 2306 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559 This theorem is referenced by:  disjne  3273  seex  4072  foelrn  5317  fconstfvm  5379  grprinvlem  5695  ordiso2  6357  iseqcaopr2  9241  2clim  9822
 Copyright terms: Public domain W3C validator