Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eunex | Unicode version |
Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
eunex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1421 | . . 3 | |
2 | 1 | eu3 1946 | . 2 |
3 | dtruex 4283 | . . . . 5 | |
4 | nfa1 1434 | . . . . . 6 | |
5 | sp 1401 | . . . . . . 7 | |
6 | 5 | con3d 561 | . . . . . 6 |
7 | 4, 6 | eximd 1503 | . . . . 5 |
8 | 3, 7 | mpi 15 | . . . 4 |
9 | 8 | exlimiv 1489 | . . 3 |
10 | 9 | adantl 262 | . 2 |
11 | 2, 10 | sylbi 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 97 wal 1241 wceq 1243 wex 1381 weu 1900 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-setind 4262 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-v 2559 df-dif 2920 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |