Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dtru | Unicode version |
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). If we assumed the law of the excluded middle this would be equivalent to dtruex 4283. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
dtru |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dtruex 4283 | . 2 | |
2 | exnalim 1537 | . 2 | |
3 | 1, 2 | ax-mp 7 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wal 1241 wex 1381 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-setind 4262 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-v 2559 df-dif 2920 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 |
This theorem is referenced by: oprabidlem 5536 |
Copyright terms: Public domain | W3C validator |