ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dtru Unicode version

Theorem dtru 4284
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). If we assumed the law of the excluded middle this would be equivalent to dtruex 4283. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
dtru  |-  -.  A. x  x  =  y
Distinct variable group:    x, y

Proof of Theorem dtru
StepHypRef Expression
1 dtruex 4283 . 2  |-  E. x  -.  x  =  y
2 exnalim 1537 . 2  |-  ( E. x  -.  x  =  y  ->  -.  A. x  x  =  y )
31, 2ax-mp 7 1  |-  -.  A. x  x  =  y
Colors of variables: wff set class
Syntax hints:   -. wn 3   A.wal 1241   E.wex 1381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-v 2559  df-dif 2920  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381
This theorem is referenced by:  oprabidlem  5536
  Copyright terms: Public domain W3C validator