ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmfco Unicode version

Theorem dmfco 5228
Description: Domains of a function composition. (Contributed by NM, 27-Jan-1997.)
Assertion
Ref Expression
dmfco  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( A  e.  dom  ( F  o.  G
)  <->  ( G `  A )  e.  dom  F ) )

Proof of Theorem dmfco
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funfvex 5179 . . . . 5  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( G `  A
)  e.  _V )
2 opeq1 3546 . . . . . . 7  |-  ( x  =  ( G `  A )  ->  <. x ,  y >.  =  <. ( G `  A ) ,  y >. )
32eleq1d 2106 . . . . . 6  |-  ( x  =  ( G `  A )  ->  ( <. x ,  y >.  e.  F  <->  <. ( G `  A ) ,  y
>.  e.  F ) )
43ceqsexgv 2670 . . . . 5  |-  ( ( G `  A )  e.  _V  ->  ( E. x ( x  =  ( G `  A
)  /\  <. x ,  y >.  e.  F
)  <->  <. ( G `  A ) ,  y
>.  e.  F ) )
51, 4syl 14 . . . 4  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( E. x ( x  =  ( G `
 A )  /\  <.
x ,  y >.  e.  F )  <->  <. ( G `
 A ) ,  y >.  e.  F
) )
6 eqcom 2042 . . . . . . 7  |-  ( x  =  ( G `  A )  <->  ( G `  A )  =  x )
7 funopfvb 5204 . . . . . . 7  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( ( G `  A )  =  x  <->  <. A ,  x >.  e.  G ) )
86, 7syl5bb 181 . . . . . 6  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( x  =  ( G `  A )  <->  <. A ,  x >.  e.  G ) )
98anbi1d 438 . . . . 5  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( ( x  =  ( G `  A
)  /\  <. x ,  y >.  e.  F
)  <->  ( <. A ,  x >.  e.  G  /\  <.
x ,  y >.  e.  F ) ) )
109exbidv 1706 . . . 4  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( E. x ( x  =  ( G `
 A )  /\  <.
x ,  y >.  e.  F )  <->  E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
115, 10bitr3d 179 . . 3  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( <. ( G `  A ) ,  y
>.  e.  F  <->  E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
1211exbidv 1706 . 2  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( E. y <.
( G `  A
) ,  y >.  e.  F  <->  E. y E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
13 eldm2g 4518 . . 3  |-  ( ( G `  A )  e.  _V  ->  (
( G `  A
)  e.  dom  F  <->  E. y <. ( G `  A ) ,  y
>.  e.  F ) )
141, 13syl 14 . 2  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( ( G `  A )  e.  dom  F  <->  E. y <. ( G `  A ) ,  y
>.  e.  F ) )
15 eldm2g 4518 . . . 4  |-  ( A  e.  dom  G  -> 
( A  e.  dom  ( F  o.  G
)  <->  E. y <. A , 
y >.  e.  ( F  o.  G ) ) )
16 vex 2557 . . . . . 6  |-  y  e. 
_V
17 opelco2g 4490 . . . . . 6  |-  ( ( A  e.  dom  G  /\  y  e.  _V )  ->  ( <. A , 
y >.  e.  ( F  o.  G )  <->  E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
1816, 17mpan2 401 . . . . 5  |-  ( A  e.  dom  G  -> 
( <. A ,  y
>.  e.  ( F  o.  G )  <->  E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
1918exbidv 1706 . . . 4  |-  ( A  e.  dom  G  -> 
( E. y <. A ,  y >.  e.  ( F  o.  G
)  <->  E. y E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
2015, 19bitrd 177 . . 3  |-  ( A  e.  dom  G  -> 
( A  e.  dom  ( F  o.  G
)  <->  E. y E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
2120adantl 262 . 2  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( A  e.  dom  ( F  o.  G
)  <->  E. y E. x
( <. A ,  x >.  e.  G  /\  <. x ,  y >.  e.  F
) ) )
2212, 14, 213bitr4rd 210 1  |-  ( ( Fun  G  /\  A  e.  dom  G )  -> 
( A  e.  dom  ( F  o.  G
)  <->  ( G `  A )  e.  dom  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2554   <.cop 3375   dom cdm 4332    o. ccom 4336   Fun wfun 4883   ` cfv 4889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3872  ax-pow 3924  ax-pr 3941
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2308  df-rex 2309  df-v 2556  df-sbc 2762  df-un 2919  df-in 2921  df-ss 2928  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3578  df-br 3762  df-opab 3816  df-id 4027  df-xp 4338  df-rel 4339  df-cnv 4340  df-co 4341  df-dm 4342  df-iota 4854  df-fun 4891  df-fn 4892  df-fv 4897
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator